| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> F : A --> CC ) | 
						
							| 2 |  | suppssdm |  |-  ( G supp 0 ) C_ dom G | 
						
							| 3 |  | fdm |  |-  ( G : A --> CC -> dom G = A ) | 
						
							| 4 | 2 3 | sseqtrid |  |-  ( G : A --> CC -> ( G supp 0 ) C_ A ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) C_ A ) | 
						
							| 6 | 5 | sselda |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> x e. A ) | 
						
							| 7 | 1 6 | ffvelcdmd |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( F ` x ) e. CC ) | 
						
							| 8 |  | simpl2 |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> G : A --> CC ) | 
						
							| 9 | 8 6 | ffvelcdmd |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( G ` x ) e. CC ) | 
						
							| 10 |  | ffn |  |-  ( G : A --> CC -> G Fn A ) | 
						
							| 11 | 10 | 3ad2ant2 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G Fn A ) | 
						
							| 12 |  | simp3 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> A e. V ) | 
						
							| 13 |  | 0cnd |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> 0 e. CC ) | 
						
							| 14 |  | elsuppfn |  |-  ( ( G Fn A /\ A e. V /\ 0 e. CC ) -> ( x e. ( G supp 0 ) <-> ( x e. A /\ ( G ` x ) =/= 0 ) ) ) | 
						
							| 15 | 11 12 13 14 | syl3anc |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( x e. ( G supp 0 ) <-> ( x e. A /\ ( G ` x ) =/= 0 ) ) ) | 
						
							| 16 | 15 | simplbda |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( G ` x ) =/= 0 ) | 
						
							| 17 | 7 9 16 | divcld |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( F ` x ) / ( G ` x ) ) e. CC ) | 
						
							| 18 | 17 | fmpttd |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) : ( G supp 0 ) --> CC ) | 
						
							| 19 |  | fdivmpt |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) | 
						
							| 20 | 19 | feq1d |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( ( F /_f G ) : ( G supp 0 ) --> CC <-> ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) : ( G supp 0 ) --> CC ) ) | 
						
							| 21 | 18 20 | mpbird |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) : ( G supp 0 ) --> CC ) |