| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> F : A --> CC ) |
| 2 |
|
suppssdm |
|- ( G supp 0 ) C_ dom G |
| 3 |
|
fdm |
|- ( G : A --> CC -> dom G = A ) |
| 4 |
2 3
|
sseqtrid |
|- ( G : A --> CC -> ( G supp 0 ) C_ A ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) C_ A ) |
| 6 |
5
|
sselda |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> x e. A ) |
| 7 |
1 6
|
ffvelcdmd |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( F ` x ) e. CC ) |
| 8 |
|
simpl2 |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> G : A --> CC ) |
| 9 |
8 6
|
ffvelcdmd |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( G ` x ) e. CC ) |
| 10 |
|
ffn |
|- ( G : A --> CC -> G Fn A ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G Fn A ) |
| 12 |
|
simp3 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> A e. V ) |
| 13 |
|
0cnd |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> 0 e. CC ) |
| 14 |
|
elsuppfn |
|- ( ( G Fn A /\ A e. V /\ 0 e. CC ) -> ( x e. ( G supp 0 ) <-> ( x e. A /\ ( G ` x ) =/= 0 ) ) ) |
| 15 |
11 12 13 14
|
syl3anc |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( x e. ( G supp 0 ) <-> ( x e. A /\ ( G ` x ) =/= 0 ) ) ) |
| 16 |
15
|
simplbda |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( G ` x ) =/= 0 ) |
| 17 |
7 9 16
|
divcld |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( F ` x ) / ( G ` x ) ) e. CC ) |
| 18 |
17
|
fmpttd |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) : ( G supp 0 ) --> CC ) |
| 19 |
|
fdivmpt |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
| 20 |
19
|
feq1d |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( ( F /_f G ) : ( G supp 0 ) --> CC <-> ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) : ( G supp 0 ) --> CC ) ) |
| 21 |
18 20
|
mpbird |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) : ( G supp 0 ) --> CC ) |