Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> F : A --> CC ) |
2 |
|
suppssdm |
|- ( G supp 0 ) C_ dom G |
3 |
|
fdm |
|- ( G : A --> CC -> dom G = A ) |
4 |
2 3
|
sseqtrid |
|- ( G : A --> CC -> ( G supp 0 ) C_ A ) |
5 |
4
|
3ad2ant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) C_ A ) |
6 |
5
|
sselda |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> x e. A ) |
7 |
1 6
|
ffvelrnd |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( F ` x ) e. CC ) |
8 |
|
simpl2 |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> G : A --> CC ) |
9 |
8 6
|
ffvelrnd |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( G ` x ) e. CC ) |
10 |
|
ffn |
|- ( G : A --> CC -> G Fn A ) |
11 |
10
|
3ad2ant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G Fn A ) |
12 |
|
simp3 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> A e. V ) |
13 |
|
0cnd |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> 0 e. CC ) |
14 |
|
elsuppfn |
|- ( ( G Fn A /\ A e. V /\ 0 e. CC ) -> ( x e. ( G supp 0 ) <-> ( x e. A /\ ( G ` x ) =/= 0 ) ) ) |
15 |
11 12 13 14
|
syl3anc |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( x e. ( G supp 0 ) <-> ( x e. A /\ ( G ` x ) =/= 0 ) ) ) |
16 |
15
|
simplbda |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( G ` x ) =/= 0 ) |
17 |
7 9 16
|
divcld |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( F ` x ) / ( G ` x ) ) e. CC ) |
18 |
17
|
fmpttd |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) : ( G supp 0 ) --> CC ) |
19 |
|
fdivmpt |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
20 |
19
|
feq1d |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( ( F /_f G ) : ( G supp 0 ) --> CC <-> ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) : ( G supp 0 ) --> CC ) ) |
21 |
18 20
|
mpbird |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) : ( G supp 0 ) --> CC ) |