Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
suppssdm |
⊢ ( 𝐺 supp 0 ) ⊆ dom 𝐺 |
3 |
|
fdm |
⊢ ( 𝐺 : 𝐴 ⟶ ℂ → dom 𝐺 = 𝐴 ) |
4 |
2 3
|
sseqtrid |
⊢ ( 𝐺 : 𝐴 ⟶ ℂ → ( 𝐺 supp 0 ) ⊆ 𝐴 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 supp 0 ) ⊆ 𝐴 ) |
6 |
5
|
sselda |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → 𝑥 ∈ 𝐴 ) |
7 |
1 6
|
ffvelrnd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
8 |
|
simpl2 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → 𝐺 : 𝐴 ⟶ ℂ ) |
9 |
8 6
|
ffvelrnd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
10 |
|
ffn |
⊢ ( 𝐺 : 𝐴 ⟶ ℂ → 𝐺 Fn 𝐴 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐺 Fn 𝐴 ) |
12 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
13 |
|
0cnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 0 ∈ ℂ ) |
14 |
|
elsuppfn |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 0 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐺 supp 0 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐺 supp 0 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) ) |
16 |
15
|
simplbda |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( 𝐺 ‘ 𝑥 ) ≠ 0 ) |
17 |
7 9 16
|
divcld |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
18 |
17
|
fmpttd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) : ( 𝐺 supp 0 ) ⟶ ℂ ) |
19 |
|
fdivmpt |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
20 |
19
|
feq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐹 /f 𝐺 ) : ( 𝐺 supp 0 ) ⟶ ℂ ↔ ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) : ( 𝐺 supp 0 ) ⟶ ℂ ) ) |
21 |
18 20
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 /f 𝐺 ) : ( 𝐺 supp 0 ) ⟶ ℂ ) |