Metamath Proof Explorer


Theorem fdivmptf

Description: The quotient of two functions into the complex numbers is a function into the complex numbers. (Contributed by AV, 16-May-2020)

Ref Expression
Assertion fdivmptf ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → ( 𝐹 /f 𝐺 ) : ( 𝐺 supp 0 ) ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 simpl1 ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → 𝐹 : 𝐴 ⟶ ℂ )
2 suppssdm ( 𝐺 supp 0 ) ⊆ dom 𝐺
3 fdm ( 𝐺 : 𝐴 ⟶ ℂ → dom 𝐺 = 𝐴 )
4 2 3 sseqtrid ( 𝐺 : 𝐴 ⟶ ℂ → ( 𝐺 supp 0 ) ⊆ 𝐴 )
5 4 3ad2ant2 ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → ( 𝐺 supp 0 ) ⊆ 𝐴 )
6 5 sselda ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → 𝑥𝐴 )
7 1 6 ffvelrnd ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( 𝐹𝑥 ) ∈ ℂ )
8 simpl2 ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → 𝐺 : 𝐴 ⟶ ℂ )
9 8 6 ffvelrnd ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( 𝐺𝑥 ) ∈ ℂ )
10 ffn ( 𝐺 : 𝐴 ⟶ ℂ → 𝐺 Fn 𝐴 )
11 10 3ad2ant2 ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → 𝐺 Fn 𝐴 )
12 simp3 ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → 𝐴𝑉 )
13 0cnd ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → 0 ∈ ℂ )
14 elsuppfn ( ( 𝐺 Fn 𝐴𝐴𝑉 ∧ 0 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐺 supp 0 ) ↔ ( 𝑥𝐴 ∧ ( 𝐺𝑥 ) ≠ 0 ) ) )
15 11 12 13 14 syl3anc ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → ( 𝑥 ∈ ( 𝐺 supp 0 ) ↔ ( 𝑥𝐴 ∧ ( 𝐺𝑥 ) ≠ 0 ) ) )
16 15 simplbda ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( 𝐺𝑥 ) ≠ 0 )
17 7 9 16 divcld ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ∈ ℂ )
18 17 fmpttd ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ) : ( 𝐺 supp 0 ) ⟶ ℂ )
19 fdivmpt ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ) )
20 19 feq1d ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → ( ( 𝐹 /f 𝐺 ) : ( 𝐺 supp 0 ) ⟶ ℂ ↔ ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ) : ( 𝐺 supp 0 ) ⟶ ℂ ) )
21 18 20 mpbird ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → ( 𝐹 /f 𝐺 ) : ( 𝐺 supp 0 ) ⟶ ℂ )