| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ x e. ( G supp 0 ) ) -> F : A --> RR ) | 
						
							| 2 |  | suppssdm |  |-  ( G supp 0 ) C_ dom G | 
						
							| 3 |  | fdm |  |-  ( G : A --> RR -> dom G = A ) | 
						
							| 4 | 2 3 | sseqtrid |  |-  ( G : A --> RR -> ( G supp 0 ) C_ A ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( G supp 0 ) C_ A ) | 
						
							| 6 | 5 | sselda |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ x e. ( G supp 0 ) ) -> x e. A ) | 
						
							| 7 | 1 6 | ffvelcdmd |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( F ` x ) e. RR ) | 
						
							| 8 |  | simpl2 |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ x e. ( G supp 0 ) ) -> G : A --> RR ) | 
						
							| 9 | 8 6 | ffvelcdmd |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( G ` x ) e. RR ) | 
						
							| 10 |  | ffn |  |-  ( G : A --> RR -> G Fn A ) | 
						
							| 11 | 10 | 3ad2ant2 |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> G Fn A ) | 
						
							| 12 |  | simp3 |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> A e. V ) | 
						
							| 13 |  | 0red |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> 0 e. RR ) | 
						
							| 14 |  | elsuppfn |  |-  ( ( G Fn A /\ A e. V /\ 0 e. RR ) -> ( x e. ( G supp 0 ) <-> ( x e. A /\ ( G ` x ) =/= 0 ) ) ) | 
						
							| 15 | 11 12 13 14 | syl3anc |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( x e. ( G supp 0 ) <-> ( x e. A /\ ( G ` x ) =/= 0 ) ) ) | 
						
							| 16 | 15 | simplbda |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( G ` x ) =/= 0 ) | 
						
							| 17 | 7 9 16 | redivcld |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( F ` x ) / ( G ` x ) ) e. RR ) | 
						
							| 18 | 17 | fmpttd |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) : ( G supp 0 ) --> RR ) | 
						
							| 19 |  | id |  |-  ( F : A --> RR -> F : A --> RR ) | 
						
							| 20 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 21 | 20 | a1i |  |-  ( F : A --> RR -> RR C_ CC ) | 
						
							| 22 | 19 21 | fssd |  |-  ( F : A --> RR -> F : A --> CC ) | 
						
							| 23 |  | id |  |-  ( G : A --> RR -> G : A --> RR ) | 
						
							| 24 | 20 | a1i |  |-  ( G : A --> RR -> RR C_ CC ) | 
						
							| 25 | 23 24 | fssd |  |-  ( G : A --> RR -> G : A --> CC ) | 
						
							| 26 |  | id |  |-  ( A e. V -> A e. V ) | 
						
							| 27 | 22 25 26 | 3anim123i |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F : A --> CC /\ G : A --> CC /\ A e. V ) ) | 
						
							| 28 |  | fdivmpt |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) | 
						
							| 30 | 29 | feq1d |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( ( F /_f G ) : ( G supp 0 ) --> RR <-> ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) : ( G supp 0 ) --> RR ) ) | 
						
							| 31 | 18 30 | mpbird |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F /_f G ) : ( G supp 0 ) --> RR ) |