| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnex |  |-  CC e. _V | 
						
							| 2 | 1 | a1i |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> CC e. _V ) | 
						
							| 3 |  | simp3 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> A e. V ) | 
						
							| 4 |  | fdivmptf |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) : ( G supp 0 ) --> CC ) | 
						
							| 5 |  | suppssdm |  |-  ( G supp 0 ) C_ dom G | 
						
							| 6 |  | fdm |  |-  ( G : A --> CC -> dom G = A ) | 
						
							| 7 | 6 | eqcomd |  |-  ( G : A --> CC -> A = dom G ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> A = dom G ) | 
						
							| 9 | 5 8 | sseqtrrid |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) C_ A ) | 
						
							| 10 |  | elpm2r |  |-  ( ( ( CC e. _V /\ A e. V ) /\ ( ( F /_f G ) : ( G supp 0 ) --> CC /\ ( G supp 0 ) C_ A ) ) -> ( F /_f G ) e. ( CC ^pm A ) ) | 
						
							| 11 | 2 3 4 9 10 | syl22anc |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) e. ( CC ^pm A ) ) |