| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ℂ  ∈  V ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | fdivmptf | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 ) : ( 𝐺  supp  0 ) ⟶ ℂ ) | 
						
							| 5 |  | suppssdm | ⊢ ( 𝐺  supp  0 )  ⊆  dom  𝐺 | 
						
							| 6 |  | fdm | ⊢ ( 𝐺 : 𝐴 ⟶ ℂ  →  dom  𝐺  =  𝐴 ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝐺 : 𝐴 ⟶ ℂ  →  𝐴  =  dom  𝐺 ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐴  =  dom  𝐺 ) | 
						
							| 9 | 5 8 | sseqtrrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐺  supp  0 )  ⊆  𝐴 ) | 
						
							| 10 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  𝐴  ∈  𝑉 )  ∧  ( ( 𝐹  /f  𝐺 ) : ( 𝐺  supp  0 ) ⟶ ℂ  ∧  ( 𝐺  supp  0 )  ⊆  𝐴 ) )  →  ( 𝐹  /f  𝐺 )  ∈  ( ℂ  ↑pm  𝐴 ) ) | 
						
							| 11 | 2 3 4 9 10 | syl22anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 )  ∈  ( ℂ  ↑pm  𝐴 ) ) |