Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
|- RR e. _V |
2 |
1
|
a1i |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> RR e. _V ) |
3 |
|
simp3 |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> A e. V ) |
4 |
|
refdivmptf |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F /_f G ) : ( G supp 0 ) --> RR ) |
5 |
|
suppssdm |
|- ( G supp 0 ) C_ dom G |
6 |
|
fdm |
|- ( G : A --> RR -> dom G = A ) |
7 |
6
|
eqcomd |
|- ( G : A --> RR -> A = dom G ) |
8 |
7
|
3ad2ant2 |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> A = dom G ) |
9 |
5 8
|
sseqtrrid |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( G supp 0 ) C_ A ) |
10 |
|
elpm2r |
|- ( ( ( RR e. _V /\ A e. V ) /\ ( ( F /_f G ) : ( G supp 0 ) --> RR /\ ( G supp 0 ) C_ A ) ) -> ( F /_f G ) e. ( RR ^pm A ) ) |
11 |
2 3 4 9 10
|
syl22anc |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F /_f G ) e. ( RR ^pm A ) ) |