| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdivmpt |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
| 2 |
1
|
adantr |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
| 3 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
| 4 |
|
fveq2 |
|- ( x = X -> ( G ` x ) = ( G ` X ) ) |
| 5 |
3 4
|
oveq12d |
|- ( x = X -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` X ) / ( G ` X ) ) ) |
| 6 |
5
|
adantl |
|- ( ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ X e. ( G supp 0 ) ) /\ x = X ) -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` X ) / ( G ` X ) ) ) |
| 7 |
|
simpr |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ X e. ( G supp 0 ) ) -> X e. ( G supp 0 ) ) |
| 8 |
|
ovexd |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( ( F ` X ) / ( G ` X ) ) e. _V ) |
| 9 |
2 6 7 8
|
fvmptd |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( ( F /_f G ) ` X ) = ( ( F ` X ) / ( G ` X ) ) ) |