Metamath Proof Explorer


Theorem fdivmptfv

Description: The function value of a quotient of two functions into the complex numbers. (Contributed by AV, 19-May-2020)

Ref Expression
Assertion fdivmptfv F : A G : A A V X supp 0 G F / f G X = F X G X

Proof

Step Hyp Ref Expression
1 fdivmpt F : A G : A A V F / f G = x supp 0 G F x G x
2 1 adantr F : A G : A A V X supp 0 G F / f G = x supp 0 G F x G x
3 fveq2 x = X F x = F X
4 fveq2 x = X G x = G X
5 3 4 oveq12d x = X F x G x = F X G X
6 5 adantl F : A G : A A V X supp 0 G x = X F x G x = F X G X
7 simpr F : A G : A A V X supp 0 G X supp 0 G
8 ovexd F : A G : A A V X supp 0 G F X G X V
9 2 6 7 8 fvmptd F : A G : A A V X supp 0 G F / f G X = F X G X