Step |
Hyp |
Ref |
Expression |
1 |
|
fdivmpt |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) |
5 |
3 4
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐺 ‘ 𝑋 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) ∧ 𝑥 = 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐺 ‘ 𝑋 ) ) ) |
7 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → 𝑋 ∈ ( 𝐺 supp 0 ) ) |
8 |
|
ovexd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) / ( 𝐺 ‘ 𝑋 ) ) ∈ V ) |
9 |
2 6 7 8
|
fvmptd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 /f 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐺 ‘ 𝑋 ) ) ) |