Metamath Proof Explorer


Theorem fdivmptfv

Description: The function value of a quotient of two functions into the complex numbers. (Contributed by AV, 19-May-2020)

Ref Expression
Assertion fdivmptfv ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 /f 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) / ( 𝐺𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 fdivmpt ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ) )
2 1 adantr ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ) )
3 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
4 fveq2 ( 𝑥 = 𝑋 → ( 𝐺𝑥 ) = ( 𝐺𝑋 ) )
5 3 4 oveq12d ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) = ( ( 𝐹𝑋 ) / ( 𝐺𝑋 ) ) )
6 5 adantl ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) ∧ 𝑥 = 𝑋 ) → ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) = ( ( 𝐹𝑋 ) / ( 𝐺𝑋 ) ) )
7 simpr ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → 𝑋 ∈ ( 𝐺 supp 0 ) )
8 ovexd ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹𝑋 ) / ( 𝐺𝑋 ) ) ∈ V )
9 2 6 7 8 fvmptd ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 /f 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) / ( 𝐺𝑋 ) ) )