Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℝ ) |
2 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
3 |
2
|
a1i |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ℝ ⊆ ℂ ) |
4 |
1 3
|
fssd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℂ ) |
5 |
|
id |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ → 𝐺 : 𝐴 ⟶ ℝ ) |
6 |
2
|
a1i |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ → ℝ ⊆ ℂ ) |
7 |
5 6
|
fssd |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ → 𝐺 : 𝐴 ⟶ ℂ ) |
8 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
9 |
4 7 8
|
3anim123i |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ) |
10 |
|
fdivmpt |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐺 ‘ 𝑋 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) ∧ 𝑥 = 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐺 ‘ 𝑋 ) ) ) |
17 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → 𝑋 ∈ ( 𝐺 supp 0 ) ) |
18 |
|
ovexd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) / ( 𝐺 ‘ 𝑋 ) ) ∈ V ) |
19 |
12 16 17 18
|
fvmptd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑋 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 /f 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐺 ‘ 𝑋 ) ) ) |