| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 2 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  ℝ  ⊆  ℂ ) | 
						
							| 4 | 1 3 | fssd | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 5 |  | id | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 6 | 2 | a1i | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  ℝ  ⊆  ℂ ) | 
						
							| 7 | 5 6 | fssd | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  𝐺 : 𝐴 ⟶ ℂ ) | 
						
							| 8 |  | id | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑉 ) | 
						
							| 9 | 4 7 8 | 3anim123i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 ) ) | 
						
							| 10 |  | fdivmpt | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 )  =  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 )  =  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑋  ∈  ( 𝐺  supp  0 ) )  →  ( 𝐹  /f  𝐺 )  =  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 15 | 13 14 | oveq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑋 )  /  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑋  ∈  ( 𝐺  supp  0 ) )  ∧  𝑥  =  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑋 )  /  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑋  ∈  ( 𝐺  supp  0 ) )  →  𝑋  ∈  ( 𝐺  supp  0 ) ) | 
						
							| 18 |  | ovexd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑋  ∈  ( 𝐺  supp  0 ) )  →  ( ( 𝐹 ‘ 𝑋 )  /  ( 𝐺 ‘ 𝑋 ) )  ∈  V ) | 
						
							| 19 | 12 16 17 18 | fvmptd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑋  ∈  ( 𝐺  supp  0 ) )  →  ( ( 𝐹  /f  𝐺 ) ‘ 𝑋 )  =  ( ( 𝐹 ‘ 𝑋 )  /  ( 𝐺 ‘ 𝑋 ) ) ) |