| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( F : A --> RR -> F : A --> RR ) | 
						
							| 2 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 3 | 2 | a1i |  |-  ( F : A --> RR -> RR C_ CC ) | 
						
							| 4 | 1 3 | fssd |  |-  ( F : A --> RR -> F : A --> CC ) | 
						
							| 5 |  | id |  |-  ( G : A --> RR -> G : A --> RR ) | 
						
							| 6 | 2 | a1i |  |-  ( G : A --> RR -> RR C_ CC ) | 
						
							| 7 | 5 6 | fssd |  |-  ( G : A --> RR -> G : A --> CC ) | 
						
							| 8 |  | id |  |-  ( A e. V -> A e. V ) | 
						
							| 9 | 4 7 8 | 3anim123i |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F : A --> CC /\ G : A --> CC /\ A e. V ) ) | 
						
							| 10 |  | fdivmpt |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( x = X -> ( F ` x ) = ( F ` X ) ) | 
						
							| 14 |  | fveq2 |  |-  ( x = X -> ( G ` x ) = ( G ` X ) ) | 
						
							| 15 | 13 14 | oveq12d |  |-  ( x = X -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` X ) / ( G ` X ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) /\ x = X ) -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` X ) / ( G ` X ) ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) -> X e. ( G supp 0 ) ) | 
						
							| 18 |  | ovexd |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( ( F ` X ) / ( G ` X ) ) e. _V ) | 
						
							| 19 | 12 16 17 18 | fvmptd |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( ( F /_f G ) ` X ) = ( ( F ` X ) / ( G ` X ) ) ) |