Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( F : A --> RR -> F : A --> RR ) |
2 |
|
ax-resscn |
|- RR C_ CC |
3 |
2
|
a1i |
|- ( F : A --> RR -> RR C_ CC ) |
4 |
1 3
|
fssd |
|- ( F : A --> RR -> F : A --> CC ) |
5 |
|
id |
|- ( G : A --> RR -> G : A --> RR ) |
6 |
2
|
a1i |
|- ( G : A --> RR -> RR C_ CC ) |
7 |
5 6
|
fssd |
|- ( G : A --> RR -> G : A --> CC ) |
8 |
|
id |
|- ( A e. V -> A e. V ) |
9 |
4 7 8
|
3anim123i |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F : A --> CC /\ G : A --> CC /\ A e. V ) ) |
10 |
|
fdivmpt |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
11 |
9 10
|
syl |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
12 |
11
|
adantr |
|- ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
13 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
14 |
|
fveq2 |
|- ( x = X -> ( G ` x ) = ( G ` X ) ) |
15 |
13 14
|
oveq12d |
|- ( x = X -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` X ) / ( G ` X ) ) ) |
16 |
15
|
adantl |
|- ( ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) /\ x = X ) -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` X ) / ( G ` X ) ) ) |
17 |
|
simpr |
|- ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) -> X e. ( G supp 0 ) ) |
18 |
|
ovexd |
|- ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( ( F ` X ) / ( G ` X ) ) e. _V ) |
19 |
12 16 17 18
|
fvmptd |
|- ( ( ( F : A --> RR /\ G : A --> RR /\ A e. V ) /\ X e. ( G supp 0 ) ) -> ( ( F /_f G ) ` X ) = ( ( F ` X ) / ( G ` X ) ) ) |