Description: Define the division of two functions into the complex numbers. (Contributed by AV, 15-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fdiv | ⊢ /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfdiv | ⊢ /f | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cvv | ⊢ V | |
| 3 | vg | ⊢ 𝑔 | |
| 4 | 1 | cv | ⊢ 𝑓 |
| 5 | cdiv | ⊢ / | |
| 6 | 5 | cof | ⊢ ∘f / |
| 7 | 3 | cv | ⊢ 𝑔 |
| 8 | 4 7 6 | co | ⊢ ( 𝑓 ∘f / 𝑔 ) |
| 9 | csupp | ⊢ supp | |
| 10 | cc0 | ⊢ 0 | |
| 11 | 7 10 9 | co | ⊢ ( 𝑔 supp 0 ) |
| 12 | 8 11 | cres | ⊢ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) |
| 13 | 1 3 2 2 12 | cmpo | ⊢ ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) |
| 14 | 0 13 | wceq | ⊢ /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) |