Metamath Proof Explorer


Definition df-fdiv

Description: Define the division of two functions into the complex numbers. (Contributed by AV, 15-May-2020)

Ref Expression
Assertion df-fdiv /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfdiv /f
1 vf 𝑓
2 cvv V
3 vg 𝑔
4 1 cv 𝑓
5 cdiv /
6 5 cof f /
7 3 cv 𝑔
8 4 7 6 co ( 𝑓f / 𝑔 )
9 csupp supp
10 cc0 0
11 7 10 9 co ( 𝑔 supp 0 )
12 8 11 cres ( ( 𝑓f / 𝑔 ) ↾ ( 𝑔 supp 0 ) )
13 1 3 2 2 12 cmpo ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) )
14 0 13 wceq /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) )