Description: Define the division of two functions into the complex numbers. (Contributed by AV, 15-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-fdiv | ⊢ /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfdiv | ⊢ /f | |
1 | vf | ⊢ 𝑓 | |
2 | cvv | ⊢ V | |
3 | vg | ⊢ 𝑔 | |
4 | 1 | cv | ⊢ 𝑓 |
5 | cdiv | ⊢ / | |
6 | 5 | cof | ⊢ ∘f / |
7 | 3 | cv | ⊢ 𝑔 |
8 | 4 7 6 | co | ⊢ ( 𝑓 ∘f / 𝑔 ) |
9 | csupp | ⊢ supp | |
10 | cc0 | ⊢ 0 | |
11 | 7 10 9 | co | ⊢ ( 𝑔 supp 0 ) |
12 | 8 11 | cres | ⊢ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) |
13 | 1 3 2 2 12 | cmpo | ⊢ ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) |
14 | 0 13 | wceq | ⊢ /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) |