Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|
2 |
|
rpssre |
|
3 |
2
|
a1i |
|
4 |
1 3
|
fssd |
|
5 |
4
|
3ad2ant3 |
|
6 |
5
|
adantr |
|
7 |
6
|
ffvelrnda |
|
8 |
|
simplrr |
|
9 |
|
simpl2 |
|
10 |
9
|
ffvelrnda |
|
11 |
10
|
rpregt0d |
|
12 |
7 8 11
|
3jca |
|
13 |
|
ledivmul2 |
|
14 |
13
|
bicomd |
|
15 |
12 14
|
syl |
|
16 |
|
id |
|
17 |
2
|
a1i |
|
18 |
16 17
|
fssd |
|
19 |
18
|
3ad2ant2 |
|
20 |
|
reex |
|
21 |
20
|
ssex |
|
22 |
21
|
3ad2ant1 |
|
23 |
5 19 22
|
3jca |
|
24 |
23
|
adantr |
|
25 |
24
|
adantr |
|
26 |
|
ffun |
|
27 |
26
|
adantl |
|
28 |
21
|
anim1ci |
|
29 |
|
fex |
|
30 |
28 29
|
syl |
|
31 |
|
0red |
|
32 |
|
frn |
|
33 |
|
0nrp |
|
34 |
|
id |
|
35 |
34
|
ssneld |
|
36 |
33 35
|
mpi |
|
37 |
|
df-nel |
|
38 |
36 37
|
sylibr |
|
39 |
32 38
|
syl |
|
40 |
39
|
adantl |
|
41 |
|
suppdm |
|
42 |
27 30 31 40 41
|
syl31anc |
|
43 |
|
fdm |
|
44 |
43
|
adantl |
|
45 |
42 44
|
eqtrd |
|
46 |
45
|
3adant3 |
|
47 |
46
|
eqcomd |
|
48 |
47
|
adantr |
|
49 |
48
|
eleq2d |
|
50 |
49
|
biimpa |
|
51 |
|
refdivmptfv |
|
52 |
25 50 51
|
syl2anc |
|
53 |
52
|
breq1d |
|
54 |
15 53
|
bitr4d |
|
55 |
54
|
imbi2d |
|
56 |
55
|
ralbidva |
|
57 |
56
|
2rexbidva |
|
58 |
|
simp1 |
|
59 |
|
ssidd |
|
60 |
|
elbigo2 |
|
61 |
19 58 5 59 60
|
syl22anc |
|
62 |
|
refdivmptf |
|
63 |
23 62
|
syl |
|
64 |
47
|
feq2d |
|
65 |
63 64
|
mpbird |
|
66 |
|
ello12 |
|
67 |
65 58 66
|
syl2anc |
|
68 |
57 61 67
|
3bitr4d |
|