Metamath Proof Explorer


Theorem elbigo2

Description: Properties of a function of order G(x) under certain assumptions. (Contributed by AV, 17-May-2020)

Ref Expression
Assertion elbigo2 G:AAF:BBAFOGxmyBxyFymGy

Proof

Step Hyp Ref Expression
1 elbigo FOGF𝑝𝑚G𝑝𝑚xmydomFx+∞FymGy
2 df-3an F𝑝𝑚G𝑝𝑚xmydomFx+∞FymGyF𝑝𝑚G𝑝𝑚xmydomFx+∞FymGy
3 1 2 bitri FOGF𝑝𝑚G𝑝𝑚xmydomFx+∞FymGy
4 reex V
5 4 4 pm3.2i VV
6 5 a1i G:AAF:BBAVV
7 simpl F:BBAF:B
8 7 adantl G:AAF:BBAF:B
9 sstr2 BAAB
10 9 adantld BAG:AAB
11 10 adantl F:BBAG:AAB
12 11 impcom G:AAF:BBAB
13 elpm2r VVF:BBF𝑝𝑚
14 6 8 12 13 syl12anc G:AAF:BBAF𝑝𝑚
15 simpl G:AAF:BBAG:AA
16 elpm2r VVG:AAG𝑝𝑚
17 6 15 16 syl2anc G:AAF:BBAG𝑝𝑚
18 ibar F𝑝𝑚G𝑝𝑚xmydomFx+∞FymGyF𝑝𝑚G𝑝𝑚xmydomFx+∞FymGy
19 18 bicomd F𝑝𝑚G𝑝𝑚F𝑝𝑚G𝑝𝑚xmydomFx+∞FymGyxmydomFx+∞FymGy
20 14 17 19 syl2anc G:AAF:BBAF𝑝𝑚G𝑝𝑚xmydomFx+∞FymGyxmydomFx+∞FymGy
21 3 20 bitrid G:AAF:BBAFOGxmydomFx+∞FymGy
22 elin ydomFx+∞ydomFyx+∞
23 fdm F:BdomF=B
24 23 ad2antrl G:AAF:BBAdomF=B
25 24 ad2antrr G:AAF:BBAxmdomF=B
26 25 eleq2d G:AAF:BBAxmydomFyB
27 26 anbi1d G:AAF:BBAxmydomFyx+∞yByx+∞
28 elicopnf xyx+∞yxy
29 28 ad3antlr G:AAF:BBAxmyByx+∞yxy
30 12 ad2antrr G:AAF:BBAxmB
31 30 sselda G:AAF:BBAxmyBy
32 31 biantrurd G:AAF:BBAxmyBxyyxy
33 29 32 bitr4d G:AAF:BBAxmyByx+∞xy
34 33 pm5.32da G:AAF:BBAxmyByx+∞yBxy
35 27 34 bitrd G:AAF:BBAxmydomFyx+∞yBxy
36 22 35 bitrid G:AAF:BBAxmydomFx+∞yBxy
37 36 imbi1d G:AAF:BBAxmydomFx+∞FymGyyBxyFymGy
38 impexp yBxyFymGyyBxyFymGy
39 37 38 bitrdi G:AAF:BBAxmydomFx+∞FymGyyBxyFymGy
40 39 ralbidv2 G:AAF:BBAxmydomFx+∞FymGyyBxyFymGy
41 40 rexbidva G:AAF:BBAxmydomFx+∞FymGymyBxyFymGy
42 41 rexbidva G:AAF:BBAxmydomFx+∞FymGyxmyBxyFymGy
43 21 42 bitrd G:AAF:BBAFOGxmyBxyFymGy