Metamath Proof Explorer


Theorem elbigo2r

Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020)

Ref Expression
Assertion elbigo2r G:AAF:BBACMxBCxFxMGxFOG

Proof

Step Hyp Ref Expression
1 breq1 y=CyxCx
2 1 imbi1d y=CyxFxmGxCxFxmGx
3 2 ralbidv y=CxByxFxmGxxBCxFxmGx
4 oveq1 m=MmGx=MGx
5 4 breq2d m=MFxmGxFxMGx
6 5 imbi2d m=MCxFxmGxCxFxMGx
7 6 ralbidv m=MxBCxFxmGxxBCxFxMGx
8 3 7 rspc2ev CMxBCxFxMGxymxByxFxmGx
9 8 3ad2ant3 G:AAF:BBACMxBCxFxMGxymxByxFxmGx
10 elbigo2 G:AAF:BBAFOGymxByxFxmGx
11 10 3adant3 G:AAF:BBACMxBCxFxMGxFOGymxByxFxmGx
12 9 11 mpbird G:AAF:BBACMxBCxFxMGxFOG