Metamath Proof Explorer


Definition df-bigo

Description: Define the function "big-O", mapping a real function g to the set of real functions "of order g(x)". Definition in section 1.1 of AhoHopUll p. 2. This is a generalization of "big-O of one", see df-o1 and df-lo1 . As explained in the comment of df-o1 , any big-O can be represented in terms of O(1) and division, see elbigolo1 . (Contributed by AV, 15-May-2020)

Ref Expression
Assertion df-bigo O=g𝑝𝑚f𝑝𝑚|xmydomfx+∞fymgy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbigo classO
1 vg setvarg
2 cr class
3 cpm class𝑝𝑚
4 2 2 3 co class𝑝𝑚
5 vf setvarf
6 vx setvarx
7 vm setvarm
8 vy setvary
9 5 cv setvarf
10 9 cdm classdomf
11 6 cv setvarx
12 cico class.
13 cpnf class+∞
14 11 13 12 co classx+∞
15 10 14 cin classdomfx+∞
16 8 cv setvary
17 16 9 cfv classfy
18 cle class
19 7 cv setvarm
20 cmul class×
21 1 cv setvarg
22 16 21 cfv classgy
23 19 22 20 co classmgy
24 17 23 18 wbr wfffymgy
25 24 8 15 wral wffydomfx+∞fymgy
26 25 7 2 wrex wffmydomfx+∞fymgy
27 26 6 2 wrex wffxmydomfx+∞fymgy
28 27 5 4 crab classf𝑝𝑚|xmydomfx+∞fymgy
29 1 4 28 cmpt classg𝑝𝑚f𝑝𝑚|xmydomfx+∞fymgy
30 0 29 wceq wffO=g𝑝𝑚f𝑝𝑚|xmydomfx+∞fymgy