Step |
Hyp |
Ref |
Expression |
0 |
|
cbigo |
|- _O |
1 |
|
vg |
|- g |
2 |
|
cr |
|- RR |
3 |
|
cpm |
|- ^pm |
4 |
2 2 3
|
co |
|- ( RR ^pm RR ) |
5 |
|
vf |
|- f |
6 |
|
vx |
|- x |
7 |
|
vm |
|- m |
8 |
|
vy |
|- y |
9 |
5
|
cv |
|- f |
10 |
9
|
cdm |
|- dom f |
11 |
6
|
cv |
|- x |
12 |
|
cico |
|- [,) |
13 |
|
cpnf |
|- +oo |
14 |
11 13 12
|
co |
|- ( x [,) +oo ) |
15 |
10 14
|
cin |
|- ( dom f i^i ( x [,) +oo ) ) |
16 |
8
|
cv |
|- y |
17 |
16 9
|
cfv |
|- ( f ` y ) |
18 |
|
cle |
|- <_ |
19 |
7
|
cv |
|- m |
20 |
|
cmul |
|- x. |
21 |
1
|
cv |
|- g |
22 |
16 21
|
cfv |
|- ( g ` y ) |
23 |
19 22 20
|
co |
|- ( m x. ( g ` y ) ) |
24 |
17 23 18
|
wbr |
|- ( f ` y ) <_ ( m x. ( g ` y ) ) |
25 |
24 8 15
|
wral |
|- A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) |
26 |
25 7 2
|
wrex |
|- E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) |
27 |
26 6 2
|
wrex |
|- E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) |
28 |
27 5 4
|
crab |
|- { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) } |
29 |
1 4 28
|
cmpt |
|- ( g e. ( RR ^pm RR ) |-> { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) } ) |
30 |
0 29
|
wceq |
|- _O = ( g e. ( RR ^pm RR ) |-> { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) } ) |