| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cbigo |  |-  _O | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cr |  |-  RR | 
						
							| 3 |  | cpm |  |-  ^pm | 
						
							| 4 | 2 2 3 | co |  |-  ( RR ^pm RR ) | 
						
							| 5 |  | vf |  |-  f | 
						
							| 6 |  | vx |  |-  x | 
						
							| 7 |  | vm |  |-  m | 
						
							| 8 |  | vy |  |-  y | 
						
							| 9 | 5 | cv |  |-  f | 
						
							| 10 | 9 | cdm |  |-  dom f | 
						
							| 11 | 6 | cv |  |-  x | 
						
							| 12 |  | cico |  |-  [,) | 
						
							| 13 |  | cpnf |  |-  +oo | 
						
							| 14 | 11 13 12 | co |  |-  ( x [,) +oo ) | 
						
							| 15 | 10 14 | cin |  |-  ( dom f i^i ( x [,) +oo ) ) | 
						
							| 16 | 8 | cv |  |-  y | 
						
							| 17 | 16 9 | cfv |  |-  ( f ` y ) | 
						
							| 18 |  | cle |  |-  <_ | 
						
							| 19 | 7 | cv |  |-  m | 
						
							| 20 |  | cmul |  |-  x. | 
						
							| 21 | 1 | cv |  |-  g | 
						
							| 22 | 16 21 | cfv |  |-  ( g ` y ) | 
						
							| 23 | 19 22 20 | co |  |-  ( m x. ( g ` y ) ) | 
						
							| 24 | 17 23 18 | wbr |  |-  ( f ` y ) <_ ( m x. ( g ` y ) ) | 
						
							| 25 | 24 8 15 | wral |  |-  A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) | 
						
							| 26 | 25 7 2 | wrex |  |-  E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) | 
						
							| 27 | 26 6 2 | wrex |  |-  E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) | 
						
							| 28 | 27 5 4 | crab |  |-  { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) } | 
						
							| 29 | 1 4 28 | cmpt |  |-  ( g e. ( RR ^pm RR ) |-> { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) } ) | 
						
							| 30 | 0 29 | wceq |  |-  _O = ( g e. ( RR ^pm RR ) |-> { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ ( m x. ( g ` y ) ) } ) |