Step |
Hyp |
Ref |
Expression |
0 |
|
clo1 |
|- <_O(1) |
1 |
|
vf |
|- f |
2 |
|
cr |
|- RR |
3 |
|
cpm |
|- ^pm |
4 |
2 2 3
|
co |
|- ( RR ^pm RR ) |
5 |
|
vx |
|- x |
6 |
|
vm |
|- m |
7 |
|
vy |
|- y |
8 |
1
|
cv |
|- f |
9 |
8
|
cdm |
|- dom f |
10 |
5
|
cv |
|- x |
11 |
|
cico |
|- [,) |
12 |
|
cpnf |
|- +oo |
13 |
10 12 11
|
co |
|- ( x [,) +oo ) |
14 |
9 13
|
cin |
|- ( dom f i^i ( x [,) +oo ) ) |
15 |
7
|
cv |
|- y |
16 |
15 8
|
cfv |
|- ( f ` y ) |
17 |
|
cle |
|- <_ |
18 |
6
|
cv |
|- m |
19 |
16 18 17
|
wbr |
|- ( f ` y ) <_ m |
20 |
19 7 14
|
wral |
|- A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ m |
21 |
20 6 2
|
wrex |
|- E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ m |
22 |
21 5 2
|
wrex |
|- E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ m |
23 |
22 1 4
|
crab |
|- { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ m } |
24 |
0 23
|
wceq |
|- <_O(1) = { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ m } |