| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clo1 |
⊢ ≤𝑂(1) |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cr |
⊢ ℝ |
| 3 |
|
cpm |
⊢ ↑pm |
| 4 |
2 2 3
|
co |
⊢ ( ℝ ↑pm ℝ ) |
| 5 |
|
vx |
⊢ 𝑥 |
| 6 |
|
vm |
⊢ 𝑚 |
| 7 |
|
vy |
⊢ 𝑦 |
| 8 |
1
|
cv |
⊢ 𝑓 |
| 9 |
8
|
cdm |
⊢ dom 𝑓 |
| 10 |
5
|
cv |
⊢ 𝑥 |
| 11 |
|
cico |
⊢ [,) |
| 12 |
|
cpnf |
⊢ +∞ |
| 13 |
10 12 11
|
co |
⊢ ( 𝑥 [,) +∞ ) |
| 14 |
9 13
|
cin |
⊢ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) |
| 15 |
7
|
cv |
⊢ 𝑦 |
| 16 |
15 8
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 17 |
|
cle |
⊢ ≤ |
| 18 |
6
|
cv |
⊢ 𝑚 |
| 19 |
16 18 17
|
wbr |
⊢ ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 |
| 20 |
19 7 14
|
wral |
⊢ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 |
| 21 |
20 6 2
|
wrex |
⊢ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 |
| 22 |
21 5 2
|
wrex |
⊢ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 |
| 23 |
22 1 4
|
crab |
⊢ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 } |
| 24 |
0 23
|
wceq |
⊢ ≤𝑂(1) = { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 } |