| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( F : A --> RR+ -> F : A --> RR+ ) | 
						
							| 2 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 3 | 2 | a1i |  |-  ( F : A --> RR+ -> RR+ C_ RR ) | 
						
							| 4 | 1 3 | fssd |  |-  ( F : A --> RR+ -> F : A --> RR ) | 
						
							| 5 | 4 | 3ad2ant3 |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> F : A --> RR ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> F : A --> RR ) | 
						
							| 7 | 6 | ffvelcdmda |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( F ` y ) e. RR ) | 
						
							| 8 |  | simplrr |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> m e. RR ) | 
						
							| 9 |  | simpl2 |  |-  ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> G : A --> RR+ ) | 
						
							| 10 | 9 | ffvelcdmda |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( G ` y ) e. RR+ ) | 
						
							| 11 | 10 | rpregt0d |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( G ` y ) e. RR /\ 0 < ( G ` y ) ) ) | 
						
							| 12 | 7 8 11 | 3jca |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( F ` y ) e. RR /\ m e. RR /\ ( ( G ` y ) e. RR /\ 0 < ( G ` y ) ) ) ) | 
						
							| 13 |  | ledivmul2 |  |-  ( ( ( F ` y ) e. RR /\ m e. RR /\ ( ( G ` y ) e. RR /\ 0 < ( G ` y ) ) ) -> ( ( ( F ` y ) / ( G ` y ) ) <_ m <-> ( F ` y ) <_ ( m x. ( G ` y ) ) ) ) | 
						
							| 14 | 13 | bicomd |  |-  ( ( ( F ` y ) e. RR /\ m e. RR /\ ( ( G ` y ) e. RR /\ 0 < ( G ` y ) ) ) -> ( ( F ` y ) <_ ( m x. ( G ` y ) ) <-> ( ( F ` y ) / ( G ` y ) ) <_ m ) ) | 
						
							| 15 | 12 14 | syl |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( F ` y ) <_ ( m x. ( G ` y ) ) <-> ( ( F ` y ) / ( G ` y ) ) <_ m ) ) | 
						
							| 16 |  | id |  |-  ( G : A --> RR+ -> G : A --> RR+ ) | 
						
							| 17 | 2 | a1i |  |-  ( G : A --> RR+ -> RR+ C_ RR ) | 
						
							| 18 | 16 17 | fssd |  |-  ( G : A --> RR+ -> G : A --> RR ) | 
						
							| 19 | 18 | 3ad2ant2 |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> G : A --> RR ) | 
						
							| 20 |  | reex |  |-  RR e. _V | 
						
							| 21 | 20 | ssex |  |-  ( A C_ RR -> A e. _V ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> A e. _V ) | 
						
							| 23 | 5 19 22 | 3jca |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F : A --> RR /\ G : A --> RR /\ A e. _V ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> ( F : A --> RR /\ G : A --> RR /\ A e. _V ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( F : A --> RR /\ G : A --> RR /\ A e. _V ) ) | 
						
							| 26 |  | ffun |  |-  ( G : A --> RR+ -> Fun G ) | 
						
							| 27 | 26 | adantl |  |-  ( ( A C_ RR /\ G : A --> RR+ ) -> Fun G ) | 
						
							| 28 | 21 | anim1ci |  |-  ( ( A C_ RR /\ G : A --> RR+ ) -> ( G : A --> RR+ /\ A e. _V ) ) | 
						
							| 29 |  | fex |  |-  ( ( G : A --> RR+ /\ A e. _V ) -> G e. _V ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( A C_ RR /\ G : A --> RR+ ) -> G e. _V ) | 
						
							| 31 |  | 0red |  |-  ( ( A C_ RR /\ G : A --> RR+ ) -> 0 e. RR ) | 
						
							| 32 |  | frn |  |-  ( G : A --> RR+ -> ran G C_ RR+ ) | 
						
							| 33 |  | 0nrp |  |-  -. 0 e. RR+ | 
						
							| 34 |  | id |  |-  ( ran G C_ RR+ -> ran G C_ RR+ ) | 
						
							| 35 | 34 | ssneld |  |-  ( ran G C_ RR+ -> ( -. 0 e. RR+ -> -. 0 e. ran G ) ) | 
						
							| 36 | 33 35 | mpi |  |-  ( ran G C_ RR+ -> -. 0 e. ran G ) | 
						
							| 37 |  | df-nel |  |-  ( 0 e/ ran G <-> -. 0 e. ran G ) | 
						
							| 38 | 36 37 | sylibr |  |-  ( ran G C_ RR+ -> 0 e/ ran G ) | 
						
							| 39 | 32 38 | syl |  |-  ( G : A --> RR+ -> 0 e/ ran G ) | 
						
							| 40 | 39 | adantl |  |-  ( ( A C_ RR /\ G : A --> RR+ ) -> 0 e/ ran G ) | 
						
							| 41 |  | suppdm |  |-  ( ( ( Fun G /\ G e. _V /\ 0 e. RR ) /\ 0 e/ ran G ) -> ( G supp 0 ) = dom G ) | 
						
							| 42 | 27 30 31 40 41 | syl31anc |  |-  ( ( A C_ RR /\ G : A --> RR+ ) -> ( G supp 0 ) = dom G ) | 
						
							| 43 |  | fdm |  |-  ( G : A --> RR+ -> dom G = A ) | 
						
							| 44 | 43 | adantl |  |-  ( ( A C_ RR /\ G : A --> RR+ ) -> dom G = A ) | 
						
							| 45 | 42 44 | eqtrd |  |-  ( ( A C_ RR /\ G : A --> RR+ ) -> ( G supp 0 ) = A ) | 
						
							| 46 | 45 | 3adant3 |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( G supp 0 ) = A ) | 
						
							| 47 | 46 | eqcomd |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> A = ( G supp 0 ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> A = ( G supp 0 ) ) | 
						
							| 49 | 48 | eleq2d |  |-  ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> ( y e. A <-> y e. ( G supp 0 ) ) ) | 
						
							| 50 | 49 | biimpa |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> y e. ( G supp 0 ) ) | 
						
							| 51 |  | refdivmptfv |  |-  ( ( ( F : A --> RR /\ G : A --> RR /\ A e. _V ) /\ y e. ( G supp 0 ) ) -> ( ( F /_f G ) ` y ) = ( ( F ` y ) / ( G ` y ) ) ) | 
						
							| 52 | 25 50 51 | syl2anc |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( F /_f G ) ` y ) = ( ( F ` y ) / ( G ` y ) ) ) | 
						
							| 53 | 52 | breq1d |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( ( F /_f G ) ` y ) <_ m <-> ( ( F ` y ) / ( G ` y ) ) <_ m ) ) | 
						
							| 54 | 15 53 | bitr4d |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( F ` y ) <_ ( m x. ( G ` y ) ) <-> ( ( F /_f G ) ` y ) <_ m ) ) | 
						
							| 55 | 54 | imbi2d |  |-  ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) <-> ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) | 
						
							| 56 | 55 | ralbidva |  |-  ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> ( A. y e. A ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) <-> A. y e. A ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) | 
						
							| 57 | 56 | 2rexbidva |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) | 
						
							| 58 |  | simp1 |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> A C_ RR ) | 
						
							| 59 |  | ssidd |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> A C_ A ) | 
						
							| 60 |  | elbigo2 |  |-  ( ( ( G : A --> RR /\ A C_ RR ) /\ ( F : A --> RR /\ A C_ A ) ) -> ( F e. ( _O ` G ) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) ) ) | 
						
							| 61 | 19 58 5 59 60 | syl22anc |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F e. ( _O ` G ) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) ) ) | 
						
							| 62 |  | refdivmptf |  |-  ( ( F : A --> RR /\ G : A --> RR /\ A e. _V ) -> ( F /_f G ) : ( G supp 0 ) --> RR ) | 
						
							| 63 | 23 62 | syl |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F /_f G ) : ( G supp 0 ) --> RR ) | 
						
							| 64 | 47 | feq2d |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( ( F /_f G ) : A --> RR <-> ( F /_f G ) : ( G supp 0 ) --> RR ) ) | 
						
							| 65 | 63 64 | mpbird |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F /_f G ) : A --> RR ) | 
						
							| 66 |  | ello12 |  |-  ( ( ( F /_f G ) : A --> RR /\ A C_ RR ) -> ( ( F /_f G ) e. <_O(1) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) | 
						
							| 67 | 65 58 66 | syl2anc |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( ( F /_f G ) e. <_O(1) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) | 
						
							| 68 | 57 61 67 | 3bitr4d |  |-  ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F e. ( _O ` G ) <-> ( F /_f G ) e. <_O(1) ) ) |