Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( F : A --> RR+ -> F : A --> RR+ ) |
2 |
|
rpssre |
|- RR+ C_ RR |
3 |
2
|
a1i |
|- ( F : A --> RR+ -> RR+ C_ RR ) |
4 |
1 3
|
fssd |
|- ( F : A --> RR+ -> F : A --> RR ) |
5 |
4
|
3ad2ant3 |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> F : A --> RR ) |
6 |
5
|
adantr |
|- ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> F : A --> RR ) |
7 |
6
|
ffvelrnda |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( F ` y ) e. RR ) |
8 |
|
simplrr |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> m e. RR ) |
9 |
|
simpl2 |
|- ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> G : A --> RR+ ) |
10 |
9
|
ffvelrnda |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( G ` y ) e. RR+ ) |
11 |
10
|
rpregt0d |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( G ` y ) e. RR /\ 0 < ( G ` y ) ) ) |
12 |
7 8 11
|
3jca |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( F ` y ) e. RR /\ m e. RR /\ ( ( G ` y ) e. RR /\ 0 < ( G ` y ) ) ) ) |
13 |
|
ledivmul2 |
|- ( ( ( F ` y ) e. RR /\ m e. RR /\ ( ( G ` y ) e. RR /\ 0 < ( G ` y ) ) ) -> ( ( ( F ` y ) / ( G ` y ) ) <_ m <-> ( F ` y ) <_ ( m x. ( G ` y ) ) ) ) |
14 |
13
|
bicomd |
|- ( ( ( F ` y ) e. RR /\ m e. RR /\ ( ( G ` y ) e. RR /\ 0 < ( G ` y ) ) ) -> ( ( F ` y ) <_ ( m x. ( G ` y ) ) <-> ( ( F ` y ) / ( G ` y ) ) <_ m ) ) |
15 |
12 14
|
syl |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( F ` y ) <_ ( m x. ( G ` y ) ) <-> ( ( F ` y ) / ( G ` y ) ) <_ m ) ) |
16 |
|
id |
|- ( G : A --> RR+ -> G : A --> RR+ ) |
17 |
2
|
a1i |
|- ( G : A --> RR+ -> RR+ C_ RR ) |
18 |
16 17
|
fssd |
|- ( G : A --> RR+ -> G : A --> RR ) |
19 |
18
|
3ad2ant2 |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> G : A --> RR ) |
20 |
|
reex |
|- RR e. _V |
21 |
20
|
ssex |
|- ( A C_ RR -> A e. _V ) |
22 |
21
|
3ad2ant1 |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> A e. _V ) |
23 |
5 19 22
|
3jca |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F : A --> RR /\ G : A --> RR /\ A e. _V ) ) |
24 |
23
|
adantr |
|- ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> ( F : A --> RR /\ G : A --> RR /\ A e. _V ) ) |
25 |
24
|
adantr |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( F : A --> RR /\ G : A --> RR /\ A e. _V ) ) |
26 |
|
ffun |
|- ( G : A --> RR+ -> Fun G ) |
27 |
26
|
adantl |
|- ( ( A C_ RR /\ G : A --> RR+ ) -> Fun G ) |
28 |
21
|
anim1ci |
|- ( ( A C_ RR /\ G : A --> RR+ ) -> ( G : A --> RR+ /\ A e. _V ) ) |
29 |
|
fex |
|- ( ( G : A --> RR+ /\ A e. _V ) -> G e. _V ) |
30 |
28 29
|
syl |
|- ( ( A C_ RR /\ G : A --> RR+ ) -> G e. _V ) |
31 |
|
0red |
|- ( ( A C_ RR /\ G : A --> RR+ ) -> 0 e. RR ) |
32 |
|
frn |
|- ( G : A --> RR+ -> ran G C_ RR+ ) |
33 |
|
0nrp |
|- -. 0 e. RR+ |
34 |
|
id |
|- ( ran G C_ RR+ -> ran G C_ RR+ ) |
35 |
34
|
ssneld |
|- ( ran G C_ RR+ -> ( -. 0 e. RR+ -> -. 0 e. ran G ) ) |
36 |
33 35
|
mpi |
|- ( ran G C_ RR+ -> -. 0 e. ran G ) |
37 |
|
df-nel |
|- ( 0 e/ ran G <-> -. 0 e. ran G ) |
38 |
36 37
|
sylibr |
|- ( ran G C_ RR+ -> 0 e/ ran G ) |
39 |
32 38
|
syl |
|- ( G : A --> RR+ -> 0 e/ ran G ) |
40 |
39
|
adantl |
|- ( ( A C_ RR /\ G : A --> RR+ ) -> 0 e/ ran G ) |
41 |
|
suppdm |
|- ( ( ( Fun G /\ G e. _V /\ 0 e. RR ) /\ 0 e/ ran G ) -> ( G supp 0 ) = dom G ) |
42 |
27 30 31 40 41
|
syl31anc |
|- ( ( A C_ RR /\ G : A --> RR+ ) -> ( G supp 0 ) = dom G ) |
43 |
|
fdm |
|- ( G : A --> RR+ -> dom G = A ) |
44 |
43
|
adantl |
|- ( ( A C_ RR /\ G : A --> RR+ ) -> dom G = A ) |
45 |
42 44
|
eqtrd |
|- ( ( A C_ RR /\ G : A --> RR+ ) -> ( G supp 0 ) = A ) |
46 |
45
|
3adant3 |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( G supp 0 ) = A ) |
47 |
46
|
eqcomd |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> A = ( G supp 0 ) ) |
48 |
47
|
adantr |
|- ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> A = ( G supp 0 ) ) |
49 |
48
|
eleq2d |
|- ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> ( y e. A <-> y e. ( G supp 0 ) ) ) |
50 |
49
|
biimpa |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> y e. ( G supp 0 ) ) |
51 |
|
refdivmptfv |
|- ( ( ( F : A --> RR /\ G : A --> RR /\ A e. _V ) /\ y e. ( G supp 0 ) ) -> ( ( F /_f G ) ` y ) = ( ( F ` y ) / ( G ` y ) ) ) |
52 |
25 50 51
|
syl2anc |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( F /_f G ) ` y ) = ( ( F ` y ) / ( G ` y ) ) ) |
53 |
52
|
breq1d |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( ( F /_f G ) ` y ) <_ m <-> ( ( F ` y ) / ( G ` y ) ) <_ m ) ) |
54 |
15 53
|
bitr4d |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( F ` y ) <_ ( m x. ( G ` y ) ) <-> ( ( F /_f G ) ` y ) <_ m ) ) |
55 |
54
|
imbi2d |
|- ( ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) /\ y e. A ) -> ( ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) <-> ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) |
56 |
55
|
ralbidva |
|- ( ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) /\ ( x e. RR /\ m e. RR ) ) -> ( A. y e. A ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) <-> A. y e. A ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) |
57 |
56
|
2rexbidva |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) |
58 |
|
simp1 |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> A C_ RR ) |
59 |
|
ssidd |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> A C_ A ) |
60 |
|
elbigo2 |
|- ( ( ( G : A --> RR /\ A C_ RR ) /\ ( F : A --> RR /\ A C_ A ) ) -> ( F e. ( _O ` G ) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) ) ) |
61 |
19 58 5 59 60
|
syl22anc |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F e. ( _O ` G ) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ ( m x. ( G ` y ) ) ) ) ) |
62 |
|
refdivmptf |
|- ( ( F : A --> RR /\ G : A --> RR /\ A e. _V ) -> ( F /_f G ) : ( G supp 0 ) --> RR ) |
63 |
23 62
|
syl |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F /_f G ) : ( G supp 0 ) --> RR ) |
64 |
47
|
feq2d |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( ( F /_f G ) : A --> RR <-> ( F /_f G ) : ( G supp 0 ) --> RR ) ) |
65 |
63 64
|
mpbird |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F /_f G ) : A --> RR ) |
66 |
|
ello12 |
|- ( ( ( F /_f G ) : A --> RR /\ A C_ RR ) -> ( ( F /_f G ) e. <_O(1) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) |
67 |
65 58 66
|
syl2anc |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( ( F /_f G ) e. <_O(1) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( ( F /_f G ) ` y ) <_ m ) ) ) |
68 |
57 61 67
|
3bitr4d |
|- ( ( A C_ RR /\ G : A --> RR+ /\ F : A --> RR+ ) -> ( F e. ( _O ` G ) <-> ( F /_f G ) e. <_O(1) ) ) |