| Step | Hyp | Ref | Expression | 
						
							| 1 |  | suppval1 |  |-  ( ( Fun F /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { x e. dom F | ( F ` x ) =/= Z } ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ Z e/ ran F ) -> ( F supp Z ) = { x e. dom F | ( F ` x ) =/= Z } ) | 
						
							| 3 |  | df-nel |  |-  ( Z e/ ran F <-> -. Z e. ran F ) | 
						
							| 4 |  | fvelrn |  |-  ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) | 
						
							| 5 | 4 | 3ad2antl1 |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ x e. dom F ) -> ( F ` x ) e. ran F ) | 
						
							| 6 |  | eleq1 |  |-  ( Z = ( F ` x ) -> ( Z e. ran F <-> ( F ` x ) e. ran F ) ) | 
						
							| 7 | 6 | eqcoms |  |-  ( ( F ` x ) = Z -> ( Z e. ran F <-> ( F ` x ) e. ran F ) ) | 
						
							| 8 | 5 7 | syl5ibrcom |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ x e. dom F ) -> ( ( F ` x ) = Z -> Z e. ran F ) ) | 
						
							| 9 | 8 | necon3bd |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ x e. dom F ) -> ( -. Z e. ran F -> ( F ` x ) =/= Z ) ) | 
						
							| 10 | 3 9 | biimtrid |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ x e. dom F ) -> ( Z e/ ran F -> ( F ` x ) =/= Z ) ) | 
						
							| 11 | 10 | impancom |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ Z e/ ran F ) -> ( x e. dom F -> ( F ` x ) =/= Z ) ) | 
						
							| 12 | 11 | ralrimiv |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ Z e/ ran F ) -> A. x e. dom F ( F ` x ) =/= Z ) | 
						
							| 13 |  | rabid2 |  |-  ( dom F = { x e. dom F | ( F ` x ) =/= Z } <-> A. x e. dom F ( F ` x ) =/= Z ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ Z e/ ran F ) -> dom F = { x e. dom F | ( F ` x ) =/= Z } ) | 
						
							| 15 | 2 14 | eqtr4d |  |-  ( ( ( Fun F /\ F e. V /\ Z e. W ) /\ Z e/ ran F ) -> ( F supp Z ) = dom F ) |