Metamath Proof Explorer


Theorem suppdm

Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020)

Ref Expression
Assertion suppdm FunFFVZWZranFFsuppZ=domF

Proof

Step Hyp Ref Expression
1 suppval1 FunFFVZWFsuppZ=xdomF|FxZ
2 1 adantr FunFFVZWZranFFsuppZ=xdomF|FxZ
3 df-nel ZranF¬ZranF
4 fvelrn FunFxdomFFxranF
5 4 3ad2antl1 FunFFVZWxdomFFxranF
6 eleq1 Z=FxZranFFxranF
7 6 eqcoms Fx=ZZranFFxranF
8 5 7 syl5ibrcom FunFFVZWxdomFFx=ZZranF
9 8 necon3bd FunFFVZWxdomF¬ZranFFxZ
10 3 9 biimtrid FunFFVZWxdomFZranFFxZ
11 10 impancom FunFFVZWZranFxdomFFxZ
12 11 ralrimiv FunFFVZWZranFxdomFFxZ
13 rabid2 domF=xdomF|FxZxdomFFxZ
14 12 13 sylibr FunFFVZWZranFdomF=xdomF|FxZ
15 2 14 eqtr4d FunFFVZWZranFFsuppZ=domF