Metamath Proof Explorer


Theorem suppdm

Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020)

Ref Expression
Assertion suppdm ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ( 𝐹 supp 𝑍 ) = dom 𝐹 )

Proof

Step Hyp Ref Expression
1 suppval1 ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) ≠ 𝑍 } )
2 1 adantr ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) ≠ 𝑍 } )
3 df-nel ( 𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹 )
4 fvelrn ( ( Fun 𝐹𝑥 ∈ dom 𝐹 ) → ( 𝐹𝑥 ) ∈ ran 𝐹 )
5 4 3ad2antl1 ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹𝑥 ) ∈ ran 𝐹 )
6 eleq1 ( 𝑍 = ( 𝐹𝑥 ) → ( 𝑍 ∈ ran 𝐹 ↔ ( 𝐹𝑥 ) ∈ ran 𝐹 ) )
7 6 eqcoms ( ( 𝐹𝑥 ) = 𝑍 → ( 𝑍 ∈ ran 𝐹 ↔ ( 𝐹𝑥 ) ∈ ran 𝐹 ) )
8 5 7 syl5ibrcom ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹𝑥 ) = 𝑍𝑍 ∈ ran 𝐹 ) )
9 8 necon3bd ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ¬ 𝑍 ∈ ran 𝐹 → ( 𝐹𝑥 ) ≠ 𝑍 ) )
10 3 9 syl5bi ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑍 ∉ ran 𝐹 → ( 𝐹𝑥 ) ≠ 𝑍 ) )
11 10 impancom ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ( 𝑥 ∈ dom 𝐹 → ( 𝐹𝑥 ) ≠ 𝑍 ) )
12 11 ralrimiv ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ∀ 𝑥 ∈ dom 𝐹 ( 𝐹𝑥 ) ≠ 𝑍 )
13 rabid2 ( dom 𝐹 = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) ≠ 𝑍 } ↔ ∀ 𝑥 ∈ dom 𝐹 ( 𝐹𝑥 ) ≠ 𝑍 )
14 12 13 sylibr ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → dom 𝐹 = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) ≠ 𝑍 } )
15 2 14 eqtr4d ( ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ( 𝐹 supp 𝑍 ) = dom 𝐹 )