Step |
Hyp |
Ref |
Expression |
1 |
|
suppval1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ) |
2 |
1
|
adantr |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ) |
3 |
|
df-nel |
⊢ ( 𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹 ) |
4 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
5 |
4
|
3ad2antl1 |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
6 |
|
eleq1 |
⊢ ( 𝑍 = ( 𝐹 ‘ 𝑥 ) → ( 𝑍 ∈ ran 𝐹 ↔ ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) ) |
7 |
6
|
eqcoms |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑍 → ( 𝑍 ∈ ran 𝐹 ↔ ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) ) |
8 |
5 7
|
syl5ibrcom |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑍 → 𝑍 ∈ ran 𝐹 ) ) |
9 |
8
|
necon3bd |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ¬ 𝑍 ∈ ran 𝐹 → ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) |
10 |
3 9
|
syl5bi |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑍 ∉ ran 𝐹 → ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) |
11 |
10
|
impancom |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ( 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) |
12 |
11
|
ralrimiv |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ∀ 𝑥 ∈ dom 𝐹 ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) |
13 |
|
rabid2 |
⊢ ( dom 𝐹 = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ↔ ∀ 𝑥 ∈ dom 𝐹 ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) |
14 |
12 13
|
sylibr |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → dom 𝐹 = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ) |
15 |
2 14
|
eqtr4d |
⊢ ( ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑍 ∉ ran 𝐹 ) → ( 𝐹 supp 𝑍 ) = dom 𝐹 ) |