| Step | Hyp | Ref | Expression | 
						
							| 1 |  | suppval1 | ⊢ ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝐹  supp  𝑍 )  =  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 } ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑍  ∉  ran  𝐹 )  →  ( 𝐹  supp  𝑍 )  =  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 } ) | 
						
							| 3 |  | df-nel | ⊢ ( 𝑍  ∉  ran  𝐹  ↔  ¬  𝑍  ∈  ran  𝐹 ) | 
						
							| 4 |  | fvelrn | ⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) | 
						
							| 5 | 4 | 3ad2antl1 | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑍  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑍  ∈  ran  𝐹  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) ) | 
						
							| 7 | 6 | eqcoms | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑍  →  ( 𝑍  ∈  ran  𝐹  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) ) | 
						
							| 8 | 5 7 | syl5ibrcom | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑥  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑍  →  𝑍  ∈  ran  𝐹 ) ) | 
						
							| 9 | 8 | necon3bd | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑥  ∈  dom  𝐹 )  →  ( ¬  𝑍  ∈  ran  𝐹  →  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) ) | 
						
							| 10 | 3 9 | biimtrid | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝑍  ∉  ran  𝐹  →  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) ) | 
						
							| 11 | 10 | impancom | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑍  ∉  ran  𝐹 )  →  ( 𝑥  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) ) | 
						
							| 12 | 11 | ralrimiv | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑍  ∉  ran  𝐹 )  →  ∀ 𝑥  ∈  dom  𝐹 ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) | 
						
							| 13 |  | rabid2 | ⊢ ( dom  𝐹  =  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 }  ↔  ∀ 𝑥  ∈  dom  𝐹 ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑍  ∉  ran  𝐹 )  →  dom  𝐹  =  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 } ) | 
						
							| 15 | 2 14 | eqtr4d | ⊢ ( ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑍  ∉  ran  𝐹 )  →  ( 𝐹  supp  𝑍 )  =  dom  𝐹 ) |