Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥 ) ) |
2 |
1
|
imbi1d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
3 |
2
|
ralbidv |
⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) = ( 𝑀 · ( 𝐺 ‘ 𝑥 ) ) ) |
5 |
4
|
breq2d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑀 · ( 𝐺 ‘ 𝑥 ) ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑀 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑀 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
8 |
3 7
|
rspc2ev |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑀 · ( 𝐺 ‘ 𝑥 ) ) ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐵 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑀 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐵 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ) |
10 |
|
elbigo2 |
⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐵 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
11 |
10
|
3adant3 |
⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑀 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐵 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
12 |
9 11
|
mpbird |
⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑀 · ( 𝐺 ‘ 𝑥 ) ) ) ) ) → 𝐹 ∈ ( Ο ‘ 𝐺 ) ) |