| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 | ⊢ ( 𝑦  =  𝐶  →  ( 𝑦  ≤  𝑥  ↔  𝐶  ≤  𝑥 ) ) | 
						
							| 2 | 1 | imbi1d | ⊢ ( 𝑦  =  𝐶  →  ( ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) )  ↔  ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 3 | 2 | ralbidv | ⊢ ( 𝑦  =  𝐶  →  ( ∀ 𝑥  ∈  𝐵 ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝑀  ·  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 5 | 4 | breq2d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) )  ↔  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑀  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) )  ↔  ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑀  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 7 | 6 | ralbidv | ⊢ ( 𝑚  =  𝑀  →  ( ∀ 𝑥  ∈  𝐵 ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑀  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 8 | 3 7 | rspc2ev | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐵 ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑀  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  →  ∃ 𝑦  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐵 ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝐹 : 𝐵 ⟶ ℝ  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝐶  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐵 ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑀  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) )  →  ∃ 𝑦  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐵 ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 10 |  | elbigo2 | ⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝐹 : 𝐵 ⟶ ℝ  ∧  𝐵  ⊆  𝐴 ) )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ∃ 𝑦  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐵 ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 11 | 10 | 3adant3 | ⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝐹 : 𝐵 ⟶ ℝ  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝐶  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐵 ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑀  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ∃ 𝑦  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐵 ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 12 | 9 11 | mpbird | ⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝐹 : 𝐵 ⟶ ℝ  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝐶  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐵 ( 𝐶  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  ( 𝑀  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) )  →  𝐹  ∈  ( Ο ‘ 𝐺 ) ) |