Metamath Proof Explorer


Theorem elbigo2r

Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020)

Ref Expression
Assertion elbigo2r ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑀 · ( 𝐺𝑥 ) ) ) ) ) → 𝐹 ∈ ( Ο ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑦 = 𝐶 → ( 𝑦𝑥𝐶𝑥 ) )
2 1 imbi1d ( 𝑦 = 𝐶 → ( ( 𝑦𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) ↔ ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) ) )
3 2 ralbidv ( 𝑦 = 𝐶 → ( ∀ 𝑥𝐵 ( 𝑦𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) ↔ ∀ 𝑥𝐵 ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) ) )
4 oveq1 ( 𝑚 = 𝑀 → ( 𝑚 · ( 𝐺𝑥 ) ) = ( 𝑀 · ( 𝐺𝑥 ) ) )
5 4 breq2d ( 𝑚 = 𝑀 → ( ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ↔ ( 𝐹𝑥 ) ≤ ( 𝑀 · ( 𝐺𝑥 ) ) ) )
6 5 imbi2d ( 𝑚 = 𝑀 → ( ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) ↔ ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑀 · ( 𝐺𝑥 ) ) ) ) )
7 6 ralbidv ( 𝑚 = 𝑀 → ( ∀ 𝑥𝐵 ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) ↔ ∀ 𝑥𝐵 ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑀 · ( 𝐺𝑥 ) ) ) ) )
8 3 7 rspc2ev ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑀 · ( 𝐺𝑥 ) ) ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐵 ( 𝑦𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) )
9 8 3ad2ant3 ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑀 · ( 𝐺𝑥 ) ) ) ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐵 ( 𝑦𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) )
10 elbigo2 ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵𝐴 ) ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐵 ( 𝑦𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) ) )
11 10 3adant3 ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑀 · ( 𝐺𝑥 ) ) ) ) ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐵 ( 𝑦𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑚 · ( 𝐺𝑥 ) ) ) ) )
12 9 11 mpbird ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐵 ⟶ ℝ ∧ 𝐵𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝐶𝑥 → ( 𝐹𝑥 ) ≤ ( 𝑀 · ( 𝐺𝑥 ) ) ) ) ) → 𝐹 ∈ ( Ο ‘ 𝐺 ) )