Step |
Hyp |
Ref |
Expression |
1 |
|
elbigo |
⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
2 |
|
reex |
⊢ ℝ ∈ V |
3 |
2 2
|
elpm2 |
⊢ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) ) |
4 |
3
|
simplbi |
⊢ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
6 |
1 5
|
sylbi |
⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |