| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elbigo | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ∧  𝐺  ∈  ( ℝ  ↑pm  ℝ )  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 2 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 3 | 2 2 | elpm2 | ⊢ ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ↔  ( 𝐹 : dom  𝐹 ⟶ ℝ  ∧  dom  𝐹  ⊆  ℝ ) ) | 
						
							| 4 | 3 | simplbi | ⊢ ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ∧  𝐺  ∈  ( ℝ  ↑pm  ℝ )  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) )  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 6 | 1 5 | sylbi | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  →  𝐹 : dom  𝐹 ⟶ ℝ ) |