Metamath Proof Explorer


Theorem elbigof

Description: A function of order G(x) is a function. (Contributed by AV, 18-May-2020)

Ref Expression
Assertion elbigof ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → 𝐹 : dom 𝐹 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 elbigo ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹𝑦 ) ≤ ( 𝑚 · ( 𝐺𝑦 ) ) ) )
2 reex ℝ ∈ V
3 2 2 elpm2 ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) )
4 3 simplbi ( 𝐹 ∈ ( ℝ ↑pm ℝ ) → 𝐹 : dom 𝐹 ⟶ ℝ )
5 4 3ad2ant1 ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹𝑦 ) ≤ ( 𝑚 · ( 𝐺𝑦 ) ) ) → 𝐹 : dom 𝐹 ⟶ ℝ )
6 1 5 sylbi ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → 𝐹 : dom 𝐹 ⟶ ℝ )