Metamath Proof Explorer


Theorem elbigo

Description: Properties of a function of order G(x). (Contributed by AV, 16-May-2020)

Ref Expression
Assertion elbigo FOGF𝑝𝑚G𝑝𝑚xmydomFx+∞FymGy

Proof

Step Hyp Ref Expression
1 bigoval G𝑝𝑚OG=f𝑝𝑚|xmydomfx+∞fymGy
2 1 eleq2d G𝑝𝑚FOGFf𝑝𝑚|xmydomfx+∞fymGy
3 dmeq f=Fdomf=domF
4 3 ineq1d f=Fdomfx+∞=domFx+∞
5 fveq1 f=Ffy=Fy
6 5 breq1d f=FfymGyFymGy
7 4 6 raleqbidv f=Fydomfx+∞fymGyydomFx+∞FymGy
8 7 2rexbidv f=Fxmydomfx+∞fymGyxmydomFx+∞FymGy
9 8 elrab Ff𝑝𝑚|xmydomfx+∞fymGyF𝑝𝑚xmydomFx+∞FymGy
10 2 9 bitrdi G𝑝𝑚FOGF𝑝𝑚xmydomFx+∞FymGy
11 10 pm5.32i G𝑝𝑚FOGG𝑝𝑚F𝑝𝑚xmydomFx+∞FymGy
12 elbigofrcl FOGG𝑝𝑚
13 12 pm4.71ri FOGG𝑝𝑚FOG
14 3anan12 F𝑝𝑚G𝑝𝑚xmydomFx+∞FymGyG𝑝𝑚F𝑝𝑚xmydomFx+∞FymGy
15 11 13 14 3bitr4i FOGF𝑝𝑚G𝑝𝑚xmydomFx+∞FymGy