Metamath Proof Explorer


Theorem ledivmul2

Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005)

Ref Expression
Assertion ledivmul2 ABC0<CACBABC

Proof

Step Hyp Ref Expression
1 ledivmul ABC0<CACBACB
2 recn BB
3 recn CC
4 mulcom BCBC=CB
5 2 3 4 syl2an BCBC=CB
6 5 adantrr BC0<CBC=CB
7 6 3adant1 ABC0<CBC=CB
8 7 breq2d ABC0<CABCACB
9 1 8 bitr4d ABC0<CACBABC