| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvdm | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  →  𝐺  ∈  dom  Ο ) | 
						
							| 2 |  | df-bigo | ⊢ Ο  =  ( 𝑔  ∈  ( ℝ  ↑pm  ℝ )  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 3 | 2 | dmeqi | ⊢ dom  Ο  =  dom  ( 𝑔  ∈  ( ℝ  ↑pm  ℝ )  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 4 |  | dmmptg | ⊢ ( ∀ 𝑔  ∈  ( ℝ  ↑pm  ℝ ) { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) }  ∈  V  →  dom  ( 𝑔  ∈  ( ℝ  ↑pm  ℝ )  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) } )  =  ( ℝ  ↑pm  ℝ ) ) | 
						
							| 5 |  | ovex | ⊢ ( ℝ  ↑pm  ℝ )  ∈  V | 
						
							| 6 | 5 | rabex | ⊢ { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) }  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑔  ∈  ( ℝ  ↑pm  ℝ )  →  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) }  ∈  V ) | 
						
							| 8 | 4 7 | mprg | ⊢ dom  ( 𝑔  ∈  ( ℝ  ↑pm  ℝ )  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) } )  =  ( ℝ  ↑pm  ℝ ) | 
						
							| 9 | 3 8 | eqtri | ⊢ dom  Ο  =  ( ℝ  ↑pm  ℝ ) | 
						
							| 10 | 1 9 | eleqtrdi | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  →  𝐺  ∈  ( ℝ  ↑pm  ℝ ) ) |