Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → 𝐹 ∈ ( Ο ‘ 𝐺 ) ) |
2 |
|
elbigofrcl |
⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → 𝐺 ∈ ( ℝ ↑pm ℝ ) ) |
3 |
|
reex |
⊢ ℝ ∈ V |
4 |
3 3
|
elpm2 |
⊢ ( 𝐺 ∈ ( ℝ ↑pm ℝ ) ↔ ( 𝐺 : dom 𝐺 ⟶ ℝ ∧ dom 𝐺 ⊆ ℝ ) ) |
5 |
2 4
|
sylib |
⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → ( 𝐺 : dom 𝐺 ⟶ ℝ ∧ dom 𝐺 ⊆ ℝ ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ( 𝐺 : dom 𝐺 ⟶ ℝ ∧ dom 𝐺 ⊆ ℝ ) ) |
7 |
|
3simpc |
⊢ ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) ) |
8 |
|
elbigo2 |
⊢ ( ( ( 𝐺 : dom 𝐺 ⟶ ℝ ∧ dom 𝐺 ⊆ ℝ ) ∧ ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
10 |
1 9
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |