| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  dom  𝐺 )  →  𝐹  ∈  ( Ο ‘ 𝐺 ) ) | 
						
							| 2 |  | elbigofrcl | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  →  𝐺  ∈  ( ℝ  ↑pm  ℝ ) ) | 
						
							| 3 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 4 | 3 3 | elpm2 | ⊢ ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  ↔  ( 𝐺 : dom  𝐺 ⟶ ℝ  ∧  dom  𝐺  ⊆  ℝ ) ) | 
						
							| 5 | 2 4 | sylib | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  →  ( 𝐺 : dom  𝐺 ⟶ ℝ  ∧  dom  𝐺  ⊆  ℝ ) ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  dom  𝐺 )  →  ( 𝐺 : dom  𝐺 ⟶ ℝ  ∧  dom  𝐺  ⊆  ℝ ) ) | 
						
							| 7 |  | 3simpc | ⊢ ( ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  dom  𝐺 )  →  ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  dom  𝐺 ) ) | 
						
							| 8 |  | elbigo2 | ⊢ ( ( ( 𝐺 : dom  𝐺 ⟶ ℝ  ∧  dom  𝐺  ⊆  ℝ )  ∧  ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  dom  𝐺 ) )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  dom  𝐺 )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 10 | 1 9 | mpbid | ⊢ ( ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  dom  𝐺 )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) |