Metamath Proof Explorer


Theorem elbigoimp

Description: The defining property of a function of order G(x). (Contributed by AV, 18-May-2020)

Ref Expression
Assertion elbigoimp ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝑚 · ( 𝐺𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → 𝐹 ∈ ( Ο ‘ 𝐺 ) )
2 elbigofrcl ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → 𝐺 ∈ ( ℝ ↑pm ℝ ) )
3 reex ℝ ∈ V
4 3 3 elpm2 ( 𝐺 ∈ ( ℝ ↑pm ℝ ) ↔ ( 𝐺 : dom 𝐺 ⟶ ℝ ∧ dom 𝐺 ⊆ ℝ ) )
5 2 4 sylib ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → ( 𝐺 : dom 𝐺 ⟶ ℝ ∧ dom 𝐺 ⊆ ℝ ) )
6 5 3ad2ant1 ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ( 𝐺 : dom 𝐺 ⟶ ℝ ∧ dom 𝐺 ⊆ ℝ ) )
7 3simpc ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) )
8 elbigo2 ( ( ( 𝐺 : dom 𝐺 ⟶ ℝ ∧ dom 𝐺 ⊆ ℝ ) ∧ ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝑚 · ( 𝐺𝑦 ) ) ) ) )
9 6 7 8 syl2anc ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝑚 · ( 𝐺𝑦 ) ) ) ) )
10 1 9 mpbid ( ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ dom 𝐺 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝑚 · ( 𝐺𝑦 ) ) ) )