Metamath Proof Explorer


Theorem elbigoimp

Description: The defining property of a function of order G(x). (Contributed by AV, 18-May-2020)

Ref Expression
Assertion elbigoimp FOGF:AAdomGxmyAxyFymGy

Proof

Step Hyp Ref Expression
1 simp1 FOGF:AAdomGFOG
2 elbigofrcl FOGG𝑝𝑚
3 reex V
4 3 3 elpm2 G𝑝𝑚G:domGdomG
5 2 4 sylib FOGG:domGdomG
6 5 3ad2ant1 FOGF:AAdomGG:domGdomG
7 3simpc FOGF:AAdomGF:AAdomG
8 elbigo2 G:domGdomGF:AAdomGFOGxmyAxyFymGy
9 6 7 8 syl2anc FOGF:AAdomGFOGxmyAxyFymGy
10 1 9 mpbid FOGF:AAdomGxmyAxyFymGy