Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldifeldifsn | |- ( ( X e. A /\ Y e. ( B \ A ) ) -> Y e. ( B \ { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | |- ( X e. A -> { X } C_ A ) |
|
| 2 | 1 | sscond | |- ( X e. A -> ( B \ A ) C_ ( B \ { X } ) ) |
| 3 | 2 | sselda | |- ( ( X e. A /\ Y e. ( B \ A ) ) -> Y e. ( B \ { X } ) ) |