Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmeldmressn | |- ( X e. dom F <-> X e. dom ( F |` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmressnsn | |- ( X e. dom F -> X e. dom ( F |` { X } ) ) |
|
| 2 | elinel2 | |- ( X e. ( { X } i^i dom F ) -> X e. dom F ) |
|
| 3 | dmres | |- dom ( F |` { X } ) = ( { X } i^i dom F ) |
|
| 4 | 2 3 | eleq2s | |- ( X e. dom ( F |` { X } ) -> X e. dom F ) |
| 5 | 1 4 | impbii | |- ( X e. dom F <-> X e. dom ( F |` { X } ) ) |