Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmeldmressn | |- ( X e. dom F <-> X e. dom ( F |` { X } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldmressnsn |  |-  ( X e. dom F -> X e. dom ( F |` { X } ) ) | |
| 2 | elinel2 |  |-  ( X e. ( { X } i^i dom F ) -> X e. dom F ) | |
| 3 | dmres |  |-  dom ( F |` { X } ) = ( { X } i^i dom F ) | |
| 4 | 2 3 | eleq2s |  |-  ( X e. dom ( F |` { X } ) -> X e. dom F ) | 
| 5 | 1 4 | impbii |  |-  ( X e. dom F <-> X e. dom ( F |` { X } ) ) |