Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmne0 | |- ( X e. dom F -> F =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( X e. dom F -> dom F =/= (/) ) |
|
| 2 | dmeq | |- ( F = (/) -> dom F = dom (/) ) |
|
| 3 | dm0 | |- dom (/) = (/) |
|
| 4 | 2 3 | eqtrdi | |- ( F = (/) -> dom F = (/) ) |
| 5 | 4 | necon3i | |- ( dom F =/= (/) -> F =/= (/) ) |
| 6 | 1 5 | syl | |- ( X e. dom F -> F =/= (/) ) |