Metamath Proof Explorer


Theorem elfzelzd

Description: A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis elfzelzd.1
|- ( ph -> K e. ( M ... N ) )
Assertion elfzelzd
|- ( ph -> K e. ZZ )

Proof

Step Hyp Ref Expression
1 elfzelzd.1
 |-  ( ph -> K e. ( M ... N ) )
2 elfzelz
 |-  ( K e. ( M ... N ) -> K e. ZZ )
3 1 2 syl
 |-  ( ph -> K e. ZZ )