Metamath Proof Explorer


Theorem elfzelzd

Description: A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis elfzelzd.1 ( 𝜑𝐾 ∈ ( 𝑀 ... 𝑁 ) )
Assertion elfzelzd ( 𝜑𝐾 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 elfzelzd.1 ( 𝜑𝐾 ∈ ( 𝑀 ... 𝑁 ) )
2 elfzelz ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ℤ )
3 1 2 syl ( 𝜑𝐾 ∈ ℤ )