Metamath Proof Explorer


Theorem elfzm12

Description: Membership in a curtailed finite sequence of integers. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion elfzm12
|- ( N e. NN -> ( M e. ( 1 ... ( N - 1 ) ) -> M e. ( 1 ... N ) ) )

Proof

Step Hyp Ref Expression
1 nnz
 |-  ( N e. NN -> N e. ZZ )
2 zre
 |-  ( N e. ZZ -> N e. RR )
3 2 lem1d
 |-  ( N e. ZZ -> ( N - 1 ) <_ N )
4 peano2zm
 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )
5 eluz
 |-  ( ( ( N - 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( N - 1 ) ) <-> ( N - 1 ) <_ N ) )
6 4 5 mpancom
 |-  ( N e. ZZ -> ( N e. ( ZZ>= ` ( N - 1 ) ) <-> ( N - 1 ) <_ N ) )
7 3 6 mpbird
 |-  ( N e. ZZ -> N e. ( ZZ>= ` ( N - 1 ) ) )
8 fzss2
 |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
9 1 7 8 3syl
 |-  ( N e. NN -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
10 9 sseld
 |-  ( N e. NN -> ( M e. ( 1 ... ( N - 1 ) ) -> M e. ( 1 ... N ) ) )