Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
2 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
3 |
2
|
lem1d |
|- ( N e. ZZ -> ( N - 1 ) <_ N ) |
4 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
5 |
|
eluz |
|- ( ( ( N - 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( N - 1 ) ) <-> ( N - 1 ) <_ N ) ) |
6 |
4 5
|
mpancom |
|- ( N e. ZZ -> ( N e. ( ZZ>= ` ( N - 1 ) ) <-> ( N - 1 ) <_ N ) ) |
7 |
3 6
|
mpbird |
|- ( N e. ZZ -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
8 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
9 |
1 7 8
|
3syl |
|- ( N e. NN -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
10 |
9
|
sseld |
|- ( N e. NN -> ( M e. ( 1 ... ( N - 1 ) ) -> M e. ( 1 ... N ) ) ) |