Metamath Proof Explorer


Theorem elfzo0le

Description: A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion elfzo0le
|- ( A e. ( 0 ..^ B ) -> A <_ B )

Proof

Step Hyp Ref Expression
1 elfzo0
 |-  ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) )
2 nn0re
 |-  ( A e. NN0 -> A e. RR )
3 nnre
 |-  ( B e. NN -> B e. RR )
4 ltle
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) )
5 2 3 4 syl2an
 |-  ( ( A e. NN0 /\ B e. NN ) -> ( A < B -> A <_ B ) )
6 5 3impia
 |-  ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A <_ B )
7 1 6 sylbi
 |-  ( A e. ( 0 ..^ B ) -> A <_ B )