Metamath Proof Explorer


Theorem elfzo0le

Description: A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion elfzo0le A0..^BAB

Proof

Step Hyp Ref Expression
1 elfzo0 A0..^BA0BA<B
2 nn0re A0A
3 nnre BB
4 ltle ABA<BAB
5 2 3 4 syl2an A0BA<BAB
6 5 3impia A0BA<BAB
7 1 6 sylbi A0..^BAB