Metamath Proof Explorer


Theorem elfzo0le

Description: A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion elfzo0le A 0 ..^ B A B

Proof

Step Hyp Ref Expression
1 elfzo0 A 0 ..^ B A 0 B A < B
2 nn0re A 0 A
3 nnre B B
4 ltle A B A < B A B
5 2 3 4 syl2an A 0 B A < B A B
6 5 3impia A 0 B A < B A B
7 1 6 sylbi A 0 ..^ B A B