| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homarcl.h |
|- H = ( HomA ` C ) |
| 2 |
|
homafval.b |
|- B = ( Base ` C ) |
| 3 |
|
homafval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
homaval.j |
|- J = ( Hom ` C ) |
| 5 |
|
homaval.x |
|- ( ph -> X e. B ) |
| 6 |
|
homaval.y |
|- ( ph -> Y e. B ) |
| 7 |
|
elhomai.f |
|- ( ph -> F e. ( X J Y ) ) |
| 8 |
|
df-ot |
|- <. X , Y , F >. = <. <. X , Y >. , F >. |
| 9 |
1 2 3 4 5 6 7
|
elhomai |
|- ( ph -> <. X , Y >. ( X H Y ) F ) |
| 10 |
|
df-br |
|- ( <. X , Y >. ( X H Y ) F <-> <. <. X , Y >. , F >. e. ( X H Y ) ) |
| 11 |
9 10
|
sylib |
|- ( ph -> <. <. X , Y >. , F >. e. ( X H Y ) ) |
| 12 |
8 11
|
eqeltrid |
|- ( ph -> <. X , Y , F >. e. ( X H Y ) ) |