Metamath Proof Explorer


Theorem elhomai2

Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h 𝐻 = ( Homa𝐶 )
homafval.b 𝐵 = ( Base ‘ 𝐶 )
homafval.c ( 𝜑𝐶 ∈ Cat )
homaval.j 𝐽 = ( Hom ‘ 𝐶 )
homaval.x ( 𝜑𝑋𝐵 )
homaval.y ( 𝜑𝑌𝐵 )
elhomai.f ( 𝜑𝐹 ∈ ( 𝑋 𝐽 𝑌 ) )
Assertion elhomai2 ( 𝜑 → ⟨ 𝑋 , 𝑌 , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) )

Proof

Step Hyp Ref Expression
1 homarcl.h 𝐻 = ( Homa𝐶 )
2 homafval.b 𝐵 = ( Base ‘ 𝐶 )
3 homafval.c ( 𝜑𝐶 ∈ Cat )
4 homaval.j 𝐽 = ( Hom ‘ 𝐶 )
5 homaval.x ( 𝜑𝑋𝐵 )
6 homaval.y ( 𝜑𝑌𝐵 )
7 elhomai.f ( 𝜑𝐹 ∈ ( 𝑋 𝐽 𝑌 ) )
8 df-ot 𝑋 , 𝑌 , 𝐹 ⟩ = ⟨ ⟨ 𝑋 , 𝑌 ⟩ , 𝐹
9 1 2 3 4 5 6 7 elhomai ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ( 𝑋 𝐻 𝑌 ) 𝐹 )
10 df-br ( ⟨ 𝑋 , 𝑌 ⟩ ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ⟨ ⟨ 𝑋 , 𝑌 ⟩ , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) )
11 9 10 sylib ( 𝜑 → ⟨ ⟨ 𝑋 , 𝑌 ⟩ , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) )
12 8 11 eqeltrid ( 𝜑 → ⟨ 𝑋 , 𝑌 , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) )