Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| homaval.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | ||
| homaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| homaval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| elhomai.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) | ||
| Assertion | elhomai | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ( 𝑋 𝐻 𝑌 ) 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 2 | homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | homaval.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | |
| 5 | homaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | homaval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | elhomai.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) | |
| 8 | eqidd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 = 〈 𝑋 , 𝑌 〉 ) | |
| 9 | 1 2 3 4 5 6 | elhoma | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 〈 𝑋 , 𝑌 〉 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) ) |
| 10 | 8 7 9 | mpbir2and | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ( 𝑋 𝐻 𝑌 ) 𝐹 ) |