Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elicc2i.1 | |- A e. RR |
|
elicc2i.2 | |- B e. RR |
||
Assertion | elicc2i | |- ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | |- A e. RR |
|
2 | elicc2i.2 | |- B e. RR |
|
3 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) |