Metamath Proof Explorer


Theorem elicc2i

Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Hypotheses elicc2i.1
|- A e. RR
elicc2i.2
|- B e. RR
Assertion elicc2i
|- ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) )

Proof

Step Hyp Ref Expression
1 elicc2i.1
 |-  A e. RR
2 elicc2i.2
 |-  B e. RR
3 elicc2
 |-  ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) )
4 1 2 3 mp2an
 |-  ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) )