Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elicc2i.1 | ⊢ 𝐴 ∈ ℝ | |
elicc2i.2 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | elicc2i | ⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | ⊢ 𝐴 ∈ ℝ | |
2 | elicc2i.2 | ⊢ 𝐵 ∈ ℝ | |
3 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
4 | 1 2 3 | mp2an | ⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |