Metamath Proof Explorer


Theorem elicc2i

Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Hypotheses elicc2i.1 𝐴 ∈ ℝ
elicc2i.2 𝐵 ∈ ℝ
Assertion elicc2i ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 elicc2i.1 𝐴 ∈ ℝ
2 elicc2i.2 𝐵 ∈ ℝ
3 elicc2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵 ) ) )
4 1 2 3 mp2an ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵 ) )