Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | eliminable2b | |- ( { x | ph } = y <-> A. z ( z e. { x | ph } <-> z e. y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq | |- ( { x | ph } = y <-> A. z ( z e. { x | ph } <-> z e. y ) ) |