Description: fresaunres2 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | elmapresaunres2 | |- ( ( F e. ( C ^m A ) /\ G e. ( C ^m B ) /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi | |- ( F e. ( C ^m A ) -> F : A --> C ) |
|
2 | elmapi | |- ( G e. ( C ^m B ) -> G : B --> C ) |
|
3 | id | |- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
|
4 | fresaunres2 | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G ) |
|
5 | 1 2 3 4 | syl3an | |- ( ( F e. ( C ^m A ) /\ G e. ( C ^m B ) /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G ) |