Metamath Proof Explorer


Theorem elmapresaunres2

Description: fresaunres2 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion elmapresaunres2
|- ( ( F e. ( C ^m A ) /\ G e. ( C ^m B ) /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G )

Proof

Step Hyp Ref Expression
1 elmapi
 |-  ( F e. ( C ^m A ) -> F : A --> C )
2 elmapi
 |-  ( G e. ( C ^m B ) -> G : B --> C )
3 id
 |-  ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) )
4 fresaunres2
 |-  ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G )
5 1 2 3 4 syl3an
 |-  ( ( F e. ( C ^m A ) /\ G e. ( C ^m B ) /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G )