Metamath Proof Explorer


Theorem elmapresaunres2

Description: fresaunres2 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion elmapresaunres2 F C A G C B F A B = G A B F G B = G

Proof

Step Hyp Ref Expression
1 elmapi F C A F : A C
2 elmapi G C B G : B C
3 id F A B = G A B F A B = G A B
4 fresaunres2 F : A C G : B C F A B = G A B F G B = G
5 1 2 3 4 syl3an F C A G C B F A B = G A B F G B = G