Description: Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnns | |- ( A e. NN_s <-> ( A e. NN0_s /\ A =/= 0s ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nns |  |-  NN_s = ( NN0_s \ { 0s } ) | |
| 2 | 1 | eleq2i |  |-  ( A e. NN_s <-> A e. ( NN0_s \ { 0s } ) ) | 
| 3 | eldifsn |  |-  ( A e. ( NN0_s \ { 0s } ) <-> ( A e. NN0_s /\ A =/= 0s ) ) | |
| 4 | 2 3 | bitri | |- ( A e. NN_s <-> ( A e. NN0_s /\ A =/= 0s ) ) |