Metamath Proof Explorer


Theorem elo1d

Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses elo1mpt.1
|- ( ph -> A C_ RR )
elo1mpt.2
|- ( ( ph /\ x e. A ) -> B e. CC )
elo1d.3
|- ( ph -> C e. RR )
elo1d.4
|- ( ph -> M e. RR )
elo1d.5
|- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> ( abs ` B ) <_ M )
Assertion elo1d
|- ( ph -> ( x e. A |-> B ) e. O(1) )

Proof

Step Hyp Ref Expression
1 elo1mpt.1
 |-  ( ph -> A C_ RR )
2 elo1mpt.2
 |-  ( ( ph /\ x e. A ) -> B e. CC )
3 elo1d.3
 |-  ( ph -> C e. RR )
4 elo1d.4
 |-  ( ph -> M e. RR )
5 elo1d.5
 |-  ( ( ph /\ ( x e. A /\ C <_ x ) ) -> ( abs ` B ) <_ M )
6 2 abscld
 |-  ( ( ph /\ x e. A ) -> ( abs ` B ) e. RR )
7 1 6 3 4 5 ello1d
 |-  ( ph -> ( x e. A |-> ( abs ` B ) ) e. <_O(1) )
8 2 lo1o12
 |-  ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) )
9 7 8 mpbird
 |-  ( ph -> ( x e. A |-> B ) e. O(1) )