Metamath Proof Explorer


Theorem elo1d

Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses elo1mpt.1 φA
elo1mpt.2 φxAB
elo1d.3 φC
elo1d.4 φM
elo1d.5 φxACxBM
Assertion elo1d φxAB𝑂1

Proof

Step Hyp Ref Expression
1 elo1mpt.1 φA
2 elo1mpt.2 φxAB
3 elo1d.3 φC
4 elo1d.4 φM
5 elo1d.5 φxACxBM
6 2 abscld φxAB
7 1 6 3 4 5 ello1d φxAB𝑂1
8 2 lo1o12 φxAB𝑂1xAB𝑂1
9 7 8 mpbird φxAB𝑂1