Step |
Hyp |
Ref |
Expression |
1 |
|
elrab2w.1 |
|- ( x = y -> ( ph <-> ps ) ) |
2 |
|
elrab2w.2 |
|- ( y = A -> ( ps <-> ch ) ) |
3 |
|
elrab2w.3 |
|- C = { x e. B | ph } |
4 |
|
elex |
|- ( A e. C -> A e. _V ) |
5 |
|
elex |
|- ( A e. B -> A e. _V ) |
6 |
5
|
adantr |
|- ( ( A e. B /\ ch ) -> A e. _V ) |
7 |
|
eleq1w |
|- ( x = y -> ( x e. B <-> y e. B ) ) |
8 |
7 1
|
anbi12d |
|- ( x = y -> ( ( x e. B /\ ph ) <-> ( y e. B /\ ps ) ) ) |
9 |
|
eleq1 |
|- ( y = A -> ( y e. B <-> A e. B ) ) |
10 |
9 2
|
anbi12d |
|- ( y = A -> ( ( y e. B /\ ps ) <-> ( A e. B /\ ch ) ) ) |
11 |
|
df-rab |
|- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
12 |
3 11
|
eqtri |
|- C = { x | ( x e. B /\ ph ) } |
13 |
8 10 12
|
elab2gw |
|- ( A e. _V -> ( A e. C <-> ( A e. B /\ ch ) ) ) |
14 |
4 6 13
|
pm5.21nii |
|- ( A e. C <-> ( A e. B /\ ch ) ) |