| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrab2w.1 |
|- ( x = y -> ( ph <-> ps ) ) |
| 2 |
|
elrab2w.2 |
|- ( y = A -> ( ps <-> ch ) ) |
| 3 |
|
elrab2w.3 |
|- C = { x e. B | ph } |
| 4 |
|
elex |
|- ( A e. C -> A e. _V ) |
| 5 |
|
elex |
|- ( A e. B -> A e. _V ) |
| 6 |
5
|
adantr |
|- ( ( A e. B /\ ch ) -> A e. _V ) |
| 7 |
|
eleq1w |
|- ( x = y -> ( x e. B <-> y e. B ) ) |
| 8 |
7 1
|
anbi12d |
|- ( x = y -> ( ( x e. B /\ ph ) <-> ( y e. B /\ ps ) ) ) |
| 9 |
|
eleq1 |
|- ( y = A -> ( y e. B <-> A e. B ) ) |
| 10 |
9 2
|
anbi12d |
|- ( y = A -> ( ( y e. B /\ ps ) <-> ( A e. B /\ ch ) ) ) |
| 11 |
|
df-rab |
|- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
| 12 |
3 11
|
eqtri |
|- C = { x | ( x e. B /\ ph ) } |
| 13 |
8 10 12
|
elab2gw |
|- ( A e. _V -> ( A e. C <-> ( A e. B /\ ch ) ) ) |
| 14 |
4 6 13
|
pm5.21nii |
|- ( A e. C <-> ( A e. B /\ ch ) ) |